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Abstract
Background: The uremic toxin indoxyl sulfate (IS) is an important factor in chronic kidney disease (CKD)
progression. Inhibitors of the renin-angiotensin system and add-on therapy with mineralocorticoid receptor
(MR) antagonists can help reduce proteinuria and suppress CKD progression. However, the association
between IS and MR activation remains unknown.

Materials and Methods: In vivo experiments utilized the 5/6 nephrectomy model to assess mineralocorticoid
receptor (MR) activation in chronic kidney disease (CKD). The clinical parameters and
immunohistochemical analysis of IS and MR proteins were investigated. In vitro experiments involved
transfecting COS-7 cells with MR expression plasmids and MR response element-luciferase reporter
plasmids. The cells were then treated with aldosterone (10⁻¹⁰ mol/L), indoxyl sulfate (IS, 500 μmol/L), and α-
lipoic acid (10⁻³ mol/L). MR transcriptional activity was investigated by luciferase assays, and protein levels
were measured by Western blotting.

Results: In the 5/6 nephrectomy model, the serum IS concentration was significantly increased; however, the
plasma aldosterone levels were decreased. Immunohistochemistry showed that the expression of IS protein
increased in injured tubular cells in the 5/6 nephrectomy group compared with that in the sham group.
Furthermore, evaluations of serial kidney sections revealed that the expression site of IS protein was
colocalized with the distal nephron, where the expression of MR protein was observed. MR-mediated
transcriptional activity in COS-7 cells was increased in an aldosterone concentration-dependent manner. IS
increased MR-mediated transcriptional activity and protein levels with and without aldosterone, and α-
lipoic acid attenuated this increase.

Conclusions: IS could enhance MR transactivation by increasing MR protein levels through oxidative stress
in CKD rats, indicating that treatment with MR antagonists and antioxidants may play a permissive role in
inhibiting IS-induced CKD progression.
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Introduction
The number of patients with chronic kidney disease (CKD) is increasing worldwide [1]. CKD is not only the
leading cause of end-stage kidney disease but also a significant risk factor for cardiovascular events and
mortality. CKD progression has multiple pathogenesis, including aging, diabetes, hypertension,
glomerulonephritis, and ambient heat stress [2]. The mechanisms of nephropathy progression are not fully
understood, and strategies for CKD vary depending on the underlying diseases. However, uremic toxins
commonly accumulate in the body because of renal dysfunction in any cause of CKD. Previous studies have
reported that indoxyl sulfate (IS), a major uremic toxin, leads to CKD by inducing tubular and podocyte
injury, vascular inflammation, and calcification [3-5]. Furthermore, IS also causes systemic organ damage,
such as cardiac inflammation and fibrosis, leading to atrial fibrillation [6]. These previous studies have
suggested that IS removal is an important factor in inhibiting CKD progression.

Recent large-scale clinical trials have demonstrated that sodium-glucose cotransporter-2 inhibitors and MR
antagonists, in addition to renin-angiotensin system inhibitors, are useful in both diabetic and non-diabetic
CKD [7,8], and the use of MR antagonists to suppress CKD progression has attracted attention. MR activation
is caused by aldosterone or cortisol as a ligand; however, MR activation is possibly not mediated by
aldosterone but by abnormalities in the transcription factor regulatory system. We have proposed that “MR-
associated hypertension and its organ damage” exists in patients with diabetes, obesity, and CKD, in which
MR signaling is enhanced regardless of an increase in plasma aldosterone levels [9]. Various mechanisms
have been proposed for kidney injury associated with excessive MR activation, including podocyte damage
and fibrosis of the interstitium, and kidney injury can be suppressed by MR antagonists [10]. However, the
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mechanism of MR activation-mediated nephropathy progression is still unclear, and its clarification may
lead to new therapies to control the progression of nephropathy.

Despite reports on the relationship between IS and renin-angiotensin-aldosterone system (RAAS) activation,
including increased renin expression in cultured rat mesangial cells [11] and the finding that IS activates
renal RAAS and induces renal fibrosis [12], no studies have reported the relationship between IS and MR
activation. Thus, this study aimed to clarify the relationship between IS and MR activation in CKD and to
develop the treatment of CKD.

The content of this article was previously presented as a meeting poster at the annual meeting of the
Japanese Society of Nephrology on August 19, 2020.

Materials And Methods
Animal experiments
The animal protocols were approved by the institutional animal care and use committee of Oita University
(Approval number: 181503). Eight-week-old male Sprague-Dawley rats (KYODO Co. Ltd., Japan) underwent
a staged nephrectomy, starting with a 2/3 resection of the left kidney, followed by a right nephrectomy seven
days later, completing a 5/6 nephrectomy procedure (n=6) [6]. The control group underwent a sham
procedure without nephrectomy (n=6). The surgeries were performed with intraperitoneal anesthetic
administration. Both groups were anesthetized by intraperitoneal injection, and blood samples were
collected and euthanized at 10 weeks (aged 19 weeks) after 5/6 nephrectomy. 24-hour urine collection was
performed using metabolic cages at 19 weeks. Urinary protein, serum creatinine, and plasma aldosterone
(chemiluminescent enzyme immunoassay) were measured by SRL, Inc. (Tokyo, Japan). Serum IS levels were
measured by FUSHIMI Pharmaceutical Clinical Laboratory Center (Marukame, Japan). Kidney tissues were
removed during euthanization.

Cell culture, transfections, and luciferase assays
COS-7 cells were provided by the RIKEN BRC through the National Bio-Resource Project of the
MEXT/AMED, Japan. COS-7 cells were transfected, and luciferase assays were performed as described
previously [13,14]. COS-7 cells were routinely maintained in Dulbecco’s modified eagle medium (DMEM,
FUJIFILM, Tokyo, Japan) supplemented with 10% fetal bovine serum (Funakoshi Co. Ltd. Tokyo, Japan) and

1% penicillin/streptomycin (FUJIFILM). At 24 hours before transfection, 1×105 cells per well of a 24-well dish
were plated in Opti-MEM (Thermo Fisher Scientific, Tokyo, Japan). All transfections were performed using
lipofectamine 2000 (Invitrogen, MA, USA) with 0.3 μg/well of the luciferase reporter, 0.01 μg/well of pRL-
null (Promega, WI, USA) internal control plasmids, and the indicated amounts of expression plasmids
according to the manufacturer’s instructions. After 24 hours, the medium was changed to DMEM with IS
(Cayman Chemical Company, MI, USA), aldosterone (Sigma-Aldrich, MO, USA) or α-lipoic acid (FUJIFILM).
After an additional 24-48 hours, the cell extracts were assayed for both Firefly and Renilla luciferase
activities with a dual-luciferase reporter assay system (Promega). Relative luciferase activity was determined
as the ratio of Firefly/Renilla luciferase activities, and data were expressed as the mean (±S.E.) of triplicate
values obtained from a representative experiment that was independently repeated at least three times.

Plasmid construct
All experimental protocols using recombinant DNA were approved by the Oita University Genetic
Modification Safety Committee (Approval number: 29-8, 3-20, 3-33). 3×MRE-E1b-Luc and pcDNA3.1-
hMR(1-984) were gifts from Dr. Yokota (St. Marianna University School of Medicine).

Western blot analysis
The cells were lysed with RIPA buffer (Cell Signaling Technology, MA, USA) including
phenylmethanesulfonyl fluoride (Cell Signaling Technology). Protein concentrations were measured using
the Bradford method [15]. Proteins were then separated on 7.5% polyacrylamide gels (Bio-Rad, CA, USA) and
transferred onto nitrocellulose membranes (Bio-Rad). The primary antibodies used for the Western blots
were anti-MR (PP-H2133-00, Perseus Proteomics Inc., Tokyo, Japan) or anti-GAPDH (Sigma-Aldrich)
antibodies.

Immunohistochemistry
Kidney tissues cut into two μm sections were fixed in formalin and embedded in paraffin. Immunostaining
of IS and MR in renal sections was performed using the streptavidin-biotinylated peroxidase complex
method. The primary antibodies used for anti-MR antibodies were gifts from Dr. C. Gomez-Sanchez [16] or
anti-IS antibodies (Trans Genic Inc., Kobe, Japan) and incubated overnight at 4℃. Biotin-conjugated
secondary anti-mouse antibody (Vector Laboratories, CA, USA) was applied for two hours and visualized
using a 3,3′-diaminobenzidine substrate kit (Vector Laboratories) as immunostaining-positive areas and
counterstained with hematoxylin.
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Statistical analysis
 A t-test or one-way analysis of variance (ANOVA) was utilized for statistical analysis between the two
groups. The variance of the intended two groups was assayed by the F test in advance, and a corresponding
t-test was then performed. Two-way ANOVA was utilized for statistical comparisons among more than three
groups. For the multiple comparisons, Tukey’s honestly significant difference was utilized as the post hoc
analysis. All data are expressed as mean±S.E. p<0.05 was considered significant.

Results
MR activation and IS accumulation in the 5/6 nephrectomy rat model
First, a 5/6 nephrectomy (5/6 Nx) model was created to see if increased IS and MR activation could be
observed in the CKD model. The 5/6 Nx group showed significantly high levels of serum creatinine, IS, and
urinary proteins compared with the sham group but decreased plasma aldosterone levels (Figure 1A-1D). The
plasma active renin concentration did not differ between the two groups (<0.2 pg/mL). Immunostaining
showed sporadic MR protein expression in the distal/collecting ducts in both the sham and 5/6 Nx groups
(Figure 1E). In addition, the 5/6 Nx group increased IS expression in the proximal, distal, and especially of
injured tubules compared with the sham group, while the glomeruli were hardly stained. Furthermore,
evaluation of serial kidney sections revealed that the expression site of the IS protein was colocalized with
the distal nephrons with MR protein expression (Figure 1E).
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FIGURE 1: Clinical parameters and immunohistological findings in the
sham and 5/6 nephrectomy rat models.
A–C: serum levels of creatinine, indoxyl sulfate (IS), and urinary proteins were significantly increased in the 5/6
nephrectomy (5/6 Nx) group compared with the sham group, n=6 each group, *p<0.01; D: plasma levels of
aldosterone decreased in the 5/6 Nx group, *p<0.05 vs. sham group; E: Immunohistochemical findings with anti-
mineralocorticoid receptor (MR) antibody or anti-IS antibody. MR proteins were expressed in the distal/collecting
ducts in both sham and 5/6 Nx groups. IS accumulation was observed in the damaged tubules in the 5/6 Nx rat
model. IS expression (red arrow) was colocalized in the distal/collecting ducts where MR proteins were expressed
(black arrow) by serial section evaluation; Scale bar: 100 μm.

Enhancement of the aldosterone-mediated MR transcriptional activity
by IS in COS-7 cells
Then, to examine the relationship between IS and MR activation in vitro, plasmids encoding MR and
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mineralocorticoid response element-luciferase were transfected into COS-7 cells and evaluated by a

luciferase reporter assay. Treatment with aldosterone (10−10 to 10−6 mol/L) increased the MR-driven
luciferase reporter activity in a concentration-dependent manner (Figure 2A). Treatment with IS (10-500
μmol/L) increased MR-driven luciferase activity without ligand stimulation, and IS concentrations >150
μmol/L significantly enhanced MR transcriptional activity (Figure 2B). Furthermore, the addition of IS to
aldosterone-treated COS-7 cells further enhanced MR-mediated luciferase activity (Figure 2C). These
findings indicated that IS may, in part, enhance MR transactivation with and without aldosterone.

FIGURE 2: Aldosterone and indoxyl sulfate enhanced the
mineralocorticoid receptor transcriptional activity in COS-7 cells.
A: concentration-response curve to aldosterone. COS-7 cells were transfected with MR reporter, incubated with or
without aldosterone (10−12 to 10−6 mol/L) for 24 hours, and luciferase reporter assay was performed. n=4 for
each group. *p<0.01 vs. aldosterone 0. B: effects of IS (10-500 μmol/L) on luciferase activity without aldosterone.
n=4 for each group. *p<0.01 vs. IS 0. C: effects of IS (250–500 μmol/L) on luciferase activity with aldosterone
10−10 mol/L, n=5 each group. *p<0.01 vs. IS 0.

 Antioxidants inhibit MR activation by IS administration
IS causes renal tubular cell damage by producing reactive oxygen species and disrupting the antioxidant
system. Whether MR activation by IS could be suppressed by antioxidants was investigated. MR
transcriptional activity (Figure 3A, 3B) and protein levels (Figure 3C) enhanced by IS (500 μmol/L) were

significantly suppressed by α-lipoic acid (10−3 mol/L). A similar effect was observed in the presence of

aldosterone (10−10 mol/L), although the inhibitory effect of α-lipoic acid at the MR protein level was not
significant (Figure 3D). These results indicated that the enhancement of MR transactivation by IS is partly
due to the elevation of MR protein levels.
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FIGURE 3: Antioxidants inhibited mineralocorticoid receptor activation
by indoxyl sulfate in COS-7 cells.
A, B : luciferase reporter assay. Mineralocorticoid receptor (MR) transcriptional activity by indoxyl sulfate (IS) was
significantly suppressed by α-lipoic acid (10−3 mol/L) without (A) and with (B) aldosterone, n=5 each group,
*p<0.05, **p<0.01; C: the increase in MR protein levels by IS was significantly suppressed by α-lipoic acid
without aldosterone, n=6 each group, *p<0.05, **p< 0.01; D: with aldosterone, IS significantly increased MR
protein expression; however, the suppression of MR protein levels by α-lipoic acid was not significant, n=5 each
group, *p<0.05, DMSO: dimethyl sulfoxide.

Discussion
This study showed that IS is partially responsible for MR activation in CKD, and α-lipoic acid, an antioxidant
agent, inhibited IS-induced potentiation of MR transactivation.

This study focused on three points. The first point is how IS potentiates MR transactivation in the CKD rat
model. MR activation is triggered by aldosterone or cortisol as a ligand; however, ligand-independent MR
activation mechanisms such as increased transcription and sensitivity, stabilization, and other factors are
also considered [13,17-19]. The pathological conditions of ligand-independent MR activation include salt-
sensitive hypertension, diabetes, CKD, dyslipidemia, and metabolic syndrome. These conditions often
present with treatment-resistant hypertension, and add-on therapy with MR antagonists improves blood
pressure and organ damage, even with normal plasma aldosterone levels [20,21]. We have proposed such
clinical pathogenesis as MR-associated hypertension and its organ damage, in which MR is pathologically
activated regardless of plasma aldosterone levels [9]. The 5/6 Nx group in this study showed decreased
plasma aldosterone levels compared with the sham group. In the 5/6 Nx group, the renin-angiotensin-
aldosterone system may have been suppressed due to body fluid retention. In the sham group, the renin
concentration may have been decreased at the time of blood collection due to several factors, such as
anesthetics, but aldosterone was not affected. Therefore, the 5/6 Nx group may have induced MR-associated
renal damage regardless of plasma aldosterone levels. Previously, we reported that under hyperglycemic
conditions in diabetic nephropathy, de-ubiquitination of MR protein is induced by phosphorylation by the
protein kinase C pathway [14] and O-linked N-acetylglucosamine (O-GlcNAc) modification by the
hexosamine pathway, resulting in the elevation of MR protein levels and aldosterone-mediated MR
transactivation [22].

On the other hand, uremic toxins containing IS increase oxidative stress and the production of reactive
oxygen species [23], followed by renal tubular cell damage and progression of cardiovascular disease and
bone disease in patients with CKD [24,25]. Oxidative stress induced glomerular MR activation through
increased MR gene transcription [26], whereas MR antagonists improved endothelial dysfunction by
enhancing the bioavailability of nitric oxide and decreasing superoxide anion levels [27]. Thus, oxidative
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stress is not only a cause of MR transactivation but also a target for CKD treatment. In this study, we found
that IS-induced MR activation is due, at least in part, to the elevation of MR protein levels.
Immunohistochemical analysis showed that MR proteins were expressed in the nuclei of the
distal/collecting ducts and colocalized with the injured tubules in which IS was accumulated in the CKD rat
model, suggesting that the sites of tubular damage due to MR activation were consistent with those of IS. In
addition, IS was found to potentiate aldosterone-mediated MR transactivation, the activity of which was
suppressed by α-lipoic acid in COS-7 cells. α-lipoic acid has various biological actions such as energy
modulator and redox modulator, among them great antioxidant potential [28]. Based on these data,
oxidative stress by IS may play a role in enhancing MR transactivation through the post-translational
modification of MR proteins, followed by decreased ubiquitination, thus resulting in the elevation of MR
protein levels. MR luciferase activities in the absence of aldosterone were very low, suggesting that MR
transactivation by IS may occur mainly in the presence of aldosterone. The detailed molecular mechanisms
for MR proteins remain to be elucidated in future studies.

Second, determining which cells in the kidney are affected by IS and MR activation and what they do there
would be crucial. A previous study reported that IS is mainly localized in the renal proximal tubular cells,
particularly in dilated tubules in uremic rats, and exacerbates tubulointerstitial injuries [29]. In contrast, MR
expression has been observed in the distal nephron, such as the distal tubules and cortical collecting duct
cells. In this study, IS accumulated in the distal tubules where MR proteins were expressed, indicating that IS
may affect MR activation in some distal tubules. A recent study showed that aldosterone activates
transporters and pumps such as Na+ and K+-ATPase through MR transactivation in the proximal tubules in
rat kidneys [30]. We have found high expression of O-GlcNAc transferase in the proximal tubular cells of the
kidney, and the increase in O-GlcNAc modification under hyperglycemic conditions may lead to MR
overactivation in the proximal tubular cells [31]. Various studies have reported on which site of the tubule
MR activation is triggered; however, further studies are required. Renal tubular cells with IS-related injury
release transforming growth factor-β or other chemokines such as intercellular adhesion molecule-1,
monocyte chemoattractant protein-1, osteopontin, and endothelin-1 [32], which promote renal fibrosis.
Some of these chemokines were increased in response to MR expression levels in renal biopsies of patients
with proteinuria [17]. These proinflammatory factors or profibrotic factors may be responsible for the
damage in tubular cells where IS accumulation and MR expression are colocalized.

Third, we discuss the clinical significance of this study. Recent large clinical trials of the effects of
finerenone, a novel MR antagonist, on chronic kidney disease with type 2 diabetes have shown a significant
reduction in cardiovascular and renal composite outcomes [33,34]. Conversely, AST-120, an oral carbon
adsorbent that lowers IS levels by reducing the absorption of indole, improved the rate of the estimated
glomerular filtrate rate decline in the CAP-KD study [35]. However, the latest recent large clinical trials
(EPPIC trials) have shown that AST-120 treatment was not significantly effective in reducing renal events
compared with the placebo, proposing that the reduction of IS accumulation with AST-120 is insufficient to
prevent CKD progression [36,37]. The results of the present study and recent clinical trials indicate that IS
may play a permissive role in the pathogenesis of CKD progression partly by enhancing MR overactivation by
the elevation of MR protein levels.

This study has several limitations. First, the detailed molecular mechanisms of how IS increases MR protein
levels remain to be elucidated. Second, the role of IS in other CKD models, such as diabetes and
hypertension, also remains to be investigated. Third, it is necessary to know the effect of IS-mediated MR
transactivation on albuminuria/proteinuria and CKD progression in vivo. Further studies are needed to
clarify these issues.

Conclusions
Indoxyl sulfate could contribute to kidney damage partly by enhancing MR activation in 5/6 nephrectomy
CKD rats. Oxidative stress by IS may be responsible for MR transactivation through MR protein levels
elevation in CKD. Treatment with MR antagonists and antioxidants may play a permissive role in inhibiting
IS-induced CKD progression.
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