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Abstract
Introduction

Oxidative stress, an imbalance between reactive oxygen species (ROS) production and antioxidant defenses,
plays an important role in various dental diseases. Local anesthetics are frequently used in dentistry. The
potential antioxidant activity of dental local anesthetics can contribute to dental practice. Therefore, this
study aimed to investigate the ROS-scavenging activities of three commonly used dental local anesthetics,

lidocaine, prilocaine, and articaine, focusing on their effects on hydroxyl radicals (HO®) and superoxide

anions (05").

Materials and methods

The electron spin resonance (ESR) spin-trapping technique was employed to specifically measure the ROS-
scavenging activities of these local anesthetics at varying concentrations.

Results

Lidocaine, prilocaine, and articaine exhibited concentration-dependent HO*-scavenging activities, with
ICs values of 0.029%, 0.019%, and 0.014%, respectively. Lidocaine and prilocaine showed concentration-

dependent O," -scavenging activity, with ICs( values of 0.033% and 0.057%, respectively. However,

articaine did not scavenge O,"".

Conclusions

The proactive use of dental local anesthetics may mitigate oxidative injury and inflammatory damage
through direct ROS scavenging. However, further research is needed to elucidate the specific mechanisms
underlying the antioxidant effects of these dental local anesthetics and their potential impact on the dental
diseases associated with oxidative stress.

Categories: Dentistry, Anesthesiology, Pain Management
Keywords: superoxide anion, reactive oxygen species, prilocaine, oxidative stress, lidocaine, hydroxyl radical,
articaine, antioxidative effects

Introduction

Oxidative stress occurs when there is an imbalance between the production of reactive oxygen species (ROS)
and the ability of the body to neutralize them through antioxidant defenses. Oxidative stress plays a
significant role in various aspects of medicine as it is involved in the pathogenesis of various diseases and
the aging process [1,2]. Notably, oxidative stress has been implicated in the pathogenesis of diseases, such as
cardiovascular and neurodegenerative diseases, metabolic disorders, chronic inflammatory diseases,
cancers, aging, and age-related diseases [1-3]. Oxidative stress also influences several pathologies in
dentistry and oral maxillofacial surgery. Increased oxidative stress markers have been observed in patients
with periodontitis, suggesting a link between ROS and rapid destruction of periodontal tissue [4]. ROS
damage the DNA and promote cell proliferation and the development of oral squamous cell carcinoma and
other types of oral cancers [5,6]. Therefore, oxidative stress may play a role in medication-related jaw
osteonecrosis by inhibiting bone healing and promoting inflammation [7,8]. Additionally, oxidative stress is
involved in dental caries, oral lichen planus, oral submucous fibrosis, and aphthous stomatitis [9-12].
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ROS are a group of independently existing molecules that possess at least one oxygen atom and one or more
unpaired electrons. ROS includes various oxygen-containing free radicals, such as hydroxyl radical (HO"),
superoxide anion (Oy""), hydrogen peroxide, peroxyl radicals, hydroperoxides, and alkoxyl radicals [13]. HO®
is one of the most powerful oxidizing agents among free radicals and can cause significant cellular damage
by inducing lipid peroxidation, protein oxidation, and DNA strand break [14-16]. 05"~ are primarily
generated as byproducts of cellular respiration in the mitochondrial electron transport chain or produced by
other enzymes, such as NADPH oxidases and xanthine oxidase [17]. Importantly, high levels of 05" can lead

to lipid peroxidation, protein oxidation, and DNA damage [18].

Local anesthetics are among the most frequently used drugs in dentistry. Local anesthetics are broadly
classified as amide- or ester-based and are used for pain relief during dental practice. However, only certain
amide-based local anesthetics are injected locally during dental practice [19]. While oxidative stress is
associated with dental diseases, research on the ROS-scavenging activity of local anesthetics used in dental
practice has largely focused on lidocaine, with limited studies on other local anesthetics. Therefore, we
hypothesize that dental local anesthetics other than lidocaine may also scavenge ROS. This study aimed to
investigate the ROS-scavenging activities of three commonly used dental local anesthetics (lidocaine,

prilocaine, and articaine), specifically examining their ability to inhibit HO® and O,"".

Materials And Methods

Evaluation of ROS-scavenging activities using the ESR spin-trapping
technique

To test our hypothesis, we measured the ROS scavenging activities of the local anesthetics via the electron
spin resonance (ESR) spin-trapping technique, using the X-band spectrometer (JES-RE 1X, JEOL, Tokyo,
Japan) (Figure 1) [20-22]. The spectrometer was used under the following settings: a microwave power of
8.00 mW, magnetic field of 335.8+7.5 mT, field modulation width of 0.079 mT, sweep time of 1 min, and time
constant of 0.03 s. Data acquisition was achieved using WIN RAD ESR Data Analyzer software ver.1.30

(JEOL). The gain was set to 320, and the software recorded 4096 data points. HO® and O,°~ were generated a

minimum of six times.

FIGURE 1: ESR instrument

(A) Microwave generator and bridge, (B) ESR resonator cavity, (C) ESR quarts flat cell, (D) UV curing system
(UVF-204S), (E) optical fiber, and (F) magnet.

ESR, electron spin resonance; UV, ultraviolet

Solutions and reagents
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HO"® was generated using 100 mM hydrogen peroxide (H05, FUJIFILM Wako Pure Chemical Industries,

Osaka, Japan) under ultraviolet (UV) irradiation. UV light was generated using a UV curing system (UVF-
204S, SAN-EI ELECTRIC, Osaka, Japan) with the following settings: emission wavelength, 365 nm; power,

100 mW; duration, 10 s (Figure 1) [20,21]. Oy~ was generated using 3.0% H,0, and 0.3 wt% anatase-formed
titanium oxide (TiO,, FUJIFILM Wako Pure Chemical Industries) as photocatalysis under UV irradiation at
the following setting: emission wavelength, 365 nm; power, 100 mW/cm?; duration, 1 min [21,23]. For the
ESR spin-trapping agent, we used 1 mM and 5 mM CYPMPO (5-(2,2-dimethyl-1,3-
propoxycyclophosphoryl)-5-methyl-1-pyrroline-N-oxide) (Radical Research, Tokyo, Japan) for HO® and
0,7, respectively [20,21,23].

The intensity of the CYPMPO-OH * and -O," spin adduct was measured at varying concentrations of local

anesthetics as follows: lidocaine hydrochloride monohydrate (2-diethylamino-N-(2,6-
dimethylphenyl)acetamide hydrochloride monohydrate) (lidocaine, Sigma-Aldrich, MO, USA), prilocaine
hydrochloride (N-(2-methylphenyl)-2-(propylamino)propanamide hydrochloride) (prilocaine, Sigma-
Aldrich), and articaine hydrochloride (4-methyl-3-[[1-0x0-2-(propylamino)propyl]amino]-2-
thiophenecarboxylic acid methyl ester hydrochloride) (articaine, Sigma-Aldrich). Notably, the local
anesthetics were diluted with distilled water.

Statistical analysis

To establish a baseline, the spectral intensity after the addition of distilled water was designated as I. The

spectral intensity corresponding to each local anesthetic was labeled I. The relative spectral intensity
(%Intensity of I/I;) was assessed by calculating the I:Ijratio. The concentration dependence of the local

anesthetic reaction was determined by fitting the data to the following equation: A=Amax/[1+
(Ic 50/[X]0)h]+Amin, where ICs is the half-maximal inhibitory concentration for each local anesthetic with a
Hill coefficient (h) of 1. Amax and Amin are the maximal and minimal responses, respectively [24,25]. [X]y

indicates the concentration of local anesthetic applied.

Data are expressed as the mean * standard deviation (SD) of n observations, where n represents the number
of separate experiments. Statistical significance was determined using one-way ANOVA with Dunnett's
multiple comparisons. Statistical significance was set at p<0.05. All statistical analyses were performed using
GraphPad Prism 7.05 (Graph Pad Software, La Jolla, CA, USA).

Results

HO’-scavenging activities of dental local anesthetics

To determine the antioxidant properties of dental local anesthetics, we examined the HO *-scavenging
activities of lidocaine, prilocaine, and articaine. Notably, distilled water exhibited strong HO* generation

(Figure 2A-2C). However, HO® generation was significantly inhibited by lidocaine (Figure 2A), prilocaine
(Figure 2B), and articaine (Figure 2C) in a concentration-dependent manner, with IC 5 values of 0.029,

0.019, and 0.014 w/v%, respectively (Figure 2D).
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FIGURE 2: Dose-dependent relationships between hydroxyl radical
signal intensities and dental local anesthetics

(A-C) Representative typical ESR spectra of HO" in response to various concentrations of lidocaine (A), prilocaine
(B), and articaine (C). Signal intensities (in grey dotted boxes) were inhibited by each local anesthetic in a
concentration-dependent manner. (D) Concentration-response relationships of different local anesthetics. Data
points illustrate //l as functions of each local anesthetic concentration. Grey circles represent lidocaine; red
circles represent prilocaine; and blue circles represent articaine. Curves (solid lines) were fitted according to the

equation described in the text. Each data point represents the mean + SD of data from six separate experiments.
Significant differences between data points are indicated using asterisks.

*p<0.05.

D.W.,, distilled water; IC50, the 50% inhibitory concentration; ESR, electron spin resonance; SD, standard
deviation

O,""-scavenging activities of dental local anesthetics

To investigate the antioxidant properties of dental local anesthetics, we measured the O ;°~ -scavenging
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activities of lidocaine, prilocaine, and articaine. Lidocaine and prilocaine significantly inhibited Oy~

generation from distilled water in a concentration-dependent manner (Figure 34, 3B), with ICs( values of

0.033 and 0.057 wt%, respectively (Figure 5D). However, articaine did not significantly inhibit/scavenge O,""
(Figure 3C, 3D).

2024 Kuroda et al. Cureus 16(6): €63479. DOI 10.7759/cureus.63479 50f9


javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

Cureus

Part of SPRINGER NATURE

0.002%

0.003%

2% NN 3% |

330 335 340 330

magnéﬁc field (mT)

33 340
magnetic field (mT)
(@) © Lidocaine (IC, =0.033wv%)

@ Prilocaine (IC,, = 0.057wv%)

@ Articaine *
0.0004% O
100 B
¢ ® R°)
< \ \‘\
~ N
X 804 |
S ;:
b ‘\“ x
g )
aq) 60 ‘:F . *
£ (oo
T“ 40 ‘\ o
5 R
k7
G
o 204
x
T T T T 1
0.0001 0.001 0.01 0.1 1 10
‘ B . concentration (wv%)
330 335 340 n==6
magnetic field (mT)

*p<0.05,vs 1

FIGURE 3: Dose-dependent relationships between superoxide anion
signal intensities and dental local anesthetics

(A-C) Representative typical ESR spectra of O, in response to different concentrations of lidocaine (A),
prilocaine (B), and articaine (C). Signal intensities (in grey dotted boxes) of D.W. were inhibited by lidocaine (A)
and prilocaine (B) in a concentration-dependent manner. (D) Concentration-response relationships of different
local anesthetics. Data points illustrate //ly as functions of each local anesthetic concentration. Grey circles
represent lidocaine; red circles represent prilocaine; and blue circles represent articaine. Curves (solid lines) were
fitted according to the equation described in the text, except for the articaine. Each data point represents the

mean + SD of data from six separate experiments. Significant differences between data points are indicated using
asterisks.

*p<0.05.

D.W.,, distilled water; IC50, the 50% inhibitory concentration; ESR, electron spin resonance; SD, standard
deviation
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Discussion

We investigated the HO *- and O," " -scavenging activities of three dental local anesthetics (lidocaine,
prilocaine, and articaine). Lidocaine and prilocaine effectively scavenged HO® and O,"" in a concentration-

dependent manner. In contrast, articaine scavenged only HO® in a concentration-dependent manner but did

not scavenge O,"~ at the tested concentrations.

Although several studies have shown the antioxidant effects of local anesthetics, reports on the direct
capture of ROS are limited. For example, studies using the ESR spin-trapping technique showed that

lidocaine scavenged HO" in a concentration-dependent manner, with IC 5 of approximately 80 pM [26,27].
Considering that the molecular weight of lidocaine is 288.81, its ICz( (80 pM) corresponded to 0.0023%.
Overall, the results of the present study are consistent with the previous reports (Figure 2A, 2D) [26,27].

However, the concentrations at which the antioxidant effect against HO® was detected were lower than those
typically used in clinical practice (0.5-2%). In dental practice, 2% lidocaine containing epinephrine
(1:80,000) prepared in dedicated cartridges is typically used. Notably, the concentration of lidocaine in the
oral mucosa was diluted to approximately 360-120 pg/g after 10-60 min of injection with 0.5 mL of the local

anesthetic [28]. Considering that the IC ;s of lidocaine against HO* in the present study was approximately

0.029% (Figure 2D), may sufficiently scavenge HO® even when injected locally. In contrast, lidocaine did not

reportedly scavenge 05"~ [26,27]. Additionally, a comparative study of eight different local anesthetics
showed that high concentrations of local anesthetics are necessary to effectively scavenge 05" in human
neutrophils [29]. These previous findings suggest that lidocaine has a low O, scavenging potential.

Moreover, our study showed that lidocaine had a maximum O,°~ scavenging rate of approximately 40%

(Figure 3D), thereby confirming its limited scavenging activity.

Notably, we demonstrated the direct ROS scavenging activities of prilocaine and articaine. A study on lipid
peroxidation using a liposome membrane system showed that prilocaine has considerably lower antioxidant

activity than other local anesthetics [30]. Additionally, Hattori M et al. showed that O,"" inhibitory effect of
prilocaine in neutrophils was as low as that of lidocaine [29]. Moreover, a study using the xanthine-xanthine

oxidase-induced chemiluminescence showed that prilocaine inhibited O,"" levels in a concentration-

dependent manner but did not inhibit HO® [31]. In this study, similar to lidocaine, prilocaine showed high

HO®- and O," -scavenging activity (Figures 2, 5). Additionally, articaine effectively scavenged HO® in a

concentration-dependent manner (Figure 2C, 2D), but did not scavenge O,"~ (Figure 5C, 3D). Articaine

differs from other amide-based local anesthetics as it contains an ester bond and a thiophene ring [32].
Therefore, articaine has higher lipid solubility compared with other local dental anesthetics and undergoes
hydrolysis by nonspecific cholinesterase in the body [32]. In a study using the xanthine-xanthine oxidase-

induced chemiluminescence, high articaine concentrations showed reactivity against O,"" [31]. Although
whether articaine can effectively scavenge O,"" is debatable, the differences in chemical structure may stiff

affect its Oy" -scavenging ability.

Local anesthetics are used to manage local pain in clinical settings and dental practice. Lidocaine eliminates
ROS through direct scavenging, ROS-generating enzyme inhibition, mitochondrial protection,
inflammatory pathway modulation, and antioxidant defense upregulation [14-18, 33-35]. Therefore, these
multiple mechanisms may have contributed to the antioxidant properties of prilocaine and articaine in the
present study, and the proactive use of dental local anesthetics may potentially mitigate oxidative injury
and inflammatory damage. Recently, a study using lipid raft model membranes reported that local
anesthetic-induced lipid raft disruption may indirectly affect the activity of raft-associated proteins, leading
to anesthetic action [36]. Lipid peroxidation, which leads to ROS production, may be one of the mechanisms
underlying lipid raft disruption.

Despite the promising findings, this study had several limitations. First, we only focused on the chemical
reaction of ROS-scavenging activities of local anesthetics. Second, although the antioxidant mechanism of
lidocaine has been explored, the mechanisms of action of prilocaine and articaine remain speculative. Third,
we did not investigate the potential clinical implications of the observed ROS-scavenging activities, and
further research is needed to determine whether these properties translate into beneficial clinical outcomes.
Finally, considering that this study is in vitro, the results may not be directly applicable to the complex
environment of the human body [22]. Despite these limitations, the present study provides valuable insights
into the potential antioxidant properties of lidocaine, prilocaine, and articaine. Further research is needed
to fully understand the mechanisms and clinical implications of these findings.

Conclusions
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We investigated the ROS-scavenging activities of lidocaine, prilocaine, and articaine, focusing on their
effects on HO® and O,"". These activities were concentration-dependent, except for articaine's O," -

scavenging effect. Notably, antioxidant effects were observed at sub-clinical concentrations. While currently
used solely for pain relief, our findings suggest these dental local anesthetics may have potential
applications in treating oxidative stress-associated oral diseases, expanding their utility beyond pain
management.
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