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Abstract
Background
In recent years, significant advancements have been made in various scientific sectors, particularly in
healthcare and pharmaceutical research. This progress has been driven by the development of enhanced
sensing materials and methodologies. Electrochemical sensing has become an important tool in detecting
and analyzing drug molecules due to its high sensitivity, specificity, and rapid response times. Among
various drugs, paracetamol, also known as acetaminophen, is widely used for its analgesic and antipyretic
properties. Accurate detection of paracetamol is crucial due to its widespread use and potential for overdose,
which can lead to severe liver damage. Copper molybdate (CuMoO4) is a transition metal oxide that has

garnered attention for its excellent electrical conductivity and electrochemical stability. These properties
make it a promising candidate for use in electrochemical sensors. The ability of CuMoO4 to act as a sensor

material is enhanced by its unique structural and morphological characteristics, which can be tailored during
synthesis.

Aim
This study aimed to synthesize CuMoO4 and investigate its electrochemical sensing capability for the

detection of drug molecules, specifically paracetamol.

Materials and method
CuMoO4 was synthesized using a precipitation method that did not involve any surfactants. This approach

was chosen to simplify the synthesis process and avoid potential contamination from surfactants. The
morphology of the synthesized CuMoO4 nanoparticles was investigated using a field emission scanning

electron microscope (FE-SEM). Energy-dispersive X-ray spectroscopy (EDX) confirmed the purity of the
CuMoO4 nanomaterial. Structural analysis was performed using X-ray diffraction (XRD). To evaluate the

electrochemical sensing capability of CuMoO4 for paracetamol, Differential pulse voltammetry (DPV) was

employed. DPV is a sensitive electrochemical technique that can detect changes in current response
corresponding to the presence of analytes.

Results
The synthesized CuMoO4 exhibited a rock-like structure, as revealed by FE-SEM imaging. This morphology is

advantageous for electrochemical applications due to the increased surface area available for interaction
with analytes. EDX confirmed the purity of the CuMoO4 nanomaterial, showing no significant impurities.

XRD analysis indicated that the CuMoO4 nanoparticles were crystalline in nature, which is beneficial for

consistent and reproducible electrochemical behavior. The DPV analysis demonstrated that the
CuMoO4 sensor exhibited a linear increase in current response with increasing concentrations of

paracetamol. This linear relationship indicates that CuMoO₄ is capable of detecting paracetamol effectively,
with a strong and quantifiable signal response.

Conclusion
The CuMoO4 nanomaterial was successfully synthesized using a simple precipitation method and was

characterized by its rock-like morphology and crystalline structure. Electrochemical testing using DPV
showed that CuMoO4 has excellent sensing capabilities for detecting paracetamol, with a clear and linear

current response. These findings suggest that CuMoO4 is a promising electrochemical sensing material for

drug detection, potentially offering a reliable and efficient method for monitoring paracetamol and possibly
other pharmaceuticals in various settings.
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Introduction
In recent years, the performance of electrochemical sensors has been substantially improved by the
production of cutting-edge nanomaterials, enabling quick and precise analysis of target analytes. Due to
their ease of use, low cost, and high sensitivity, electrochemical sensors have become potential tools for the
identification and quantification of pharmacological compounds. Metal oxides have drawn a lot of interest
among the many materials investigated for sensing applications because of their special physicochemical
characteristics and promise for electrochemical sensing [1]. In the fields of nanotechnology and
electrochemistry, copper molybdate (CuMoO4) has attracted a tremendous deal of interest. The search for

novel materials becomes critical as the need for sensitive and effective electrochemical sensors expands
across industries, and CuMoO4 emerges as a strong contender. In pharmaceutical research and clinical

diagnostics, the electrochemical detection of drug molecules is extremely important. It makes it possible to
identify and quantify the presence of drugs in biological samples, which contributes to drug discovery,
therapeutic monitoring, and personalized medicine. Given that CuMoO4 is simple to synthesize and has

properties that can be tuned, researchers are able to easily alter it to satisfy the needs of a wide range of
sensing applications. Due to its intrinsic properties, CuMoO4 is now being explored as a material that has the

potential to transform electrochemical sensing techniques [2].

With its unique crystal structure and electrochemical activity, CuMoO4 - a binary metal oxide made of

copper (Cu) and molybdenum (Mo) - is especially well-suited for sensing applications. CuMoO4 is an

important inorganic material that has a wide range of applications, including catalysts, photoanodes, and
humidity sensors [3]. CuMoO₄ is a semiconductor widely known for its thermochromic and piezochromic
properties. CuMoO4 possesses a unique combination of properties, including a wide bandgap, outstanding

chemical stability, and a high surface area, making it an excellent candidate for various applications,
including catalysis, energy storage, and sensing [4]. Its capacity for undergoing redox reactions also provides
opportunities for effective electron transport, making it suitable for electrochemical sensing. The
synthesized CuMoO4 was obtained through the ultrasound-assisted co-precipitation method, and its

electrochemical determination of chloramphenicol was done. It showed excellent selectability, conductivity,
and stability towards the detection of chloramphenicol [5]. The CuMoO4 was evaluated for the

electrocatalytic activity of chloramphenicol, where the electrochemical sensor displays a wide linear range
with the lowest detection limit and good sensitivity [6].

One important aspect of investigating the wide range of potential uses for CuMoO 4 is its synthesis,

especially in areas like electrochemical sensing, energy storage, and catalysis. The synthesis techniques
utilized in the production of CuMoO4 are essential in modifying its physical and chemical properties, which

in turn affect how well it functions in different applications [7]. A previous study reported a new and easy
technique to synthesize CuMoO4 as a nanopowder without the use of any solvent and at low temperature,

and it was verified for its high catalytic performance [8]. The intended characteristics and uses of the
resulting CuMoO4 frequently influence the choice of synthesis technique, underscoring the significance of a

nuanced approach in material design. Drug quality control, medical diagnostics, and pharmaceutical
analysis all heavily depend on the identification and tracking of drug molecules. Conventional analytical
methods for detecting drug molecules can entail laborious procedures and sophisticated equipment.
Furthermore, there may be a need for extensive sample preparation with these procedures, which could
result in higher expenses and possible contamination hazards. To overcome these obstacles, it is crucial to
provide sensitive, focused, and quick sensing platforms for drug molecule detection [9]. Because of their
ease of use, high sensitivity, and possibility for real-time monitoring, electrochemical sensing techniques
have become highly effective tools in the detection of drug molecules. These methods are based on
measuring the current or potential changes brought about by the electrochemical reactions that happen at
the surface of the sensing material in response to the target analyte. The drug molecule used for sensing is
paracetamol. Paracetamol (acetaminophen or para-hydroxyacetanilide) is a non-opioid analgesic and
antipyretic agent used to treat fever, mild to moderate pain, and arthritis in adults and children.
Paracetamol has adverse effects such as low blood pressure, heart attack, gastrointestinal bleeds, liver injury,
and fulminant hepatic failure, and its overdose may result in severe metabolic acidosis [10]. The nanosheet-
assembled lindgrenite microflowers not only showed a favorable linear range and high sensitivity but also
demonstrated practical application and reliability towards human serum sample detection [11]. Paracetamol
was successfully detected in the presence of 4-aminophenol through the use of a molybdenum trioxide
(MoO₃) nanobelt-graphene oxide (GO) composite modified carbon paste electrode (CPE) with desirable
linear rates [12]. The palladium/graphene oxide (Pd/GO) nanocomposite can be utilized as an improved
sensing platform for the electrochemical determination of paracetamol, as it exhibits better electrocatalytic
activity during the oxidation of paracetamol with a larger peak current and a lower oxidation potential [13].
A titanium-sol-based sensor detected paracetamol in environmental water with precision [14].
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In this study, we focus on the synthesis of CuMoO4 and investigate its potential as an electrochemical

sensing material for paracetamol drug molecules. This study contributes to providing techniques for
minimizing the adverse effects of paracetamol drugs.

Materials And Methods
The materials used in the experiments included copper acetate monohydrate, sodium molybdate, distilled
water, copper molybdate, ethanol, and a muffle furnace.

Synthesis of CuMoO4 nanoparticles
As depicted in Figure 1, CuMoO4 nanoparticles were synthesized using a precipitation method without any

surfactant. The starting materials used were cupric acetate monohydrate [(CH3COO)2Cu·H2O], labeled as

solution A, and sodium molybdate [Na2MoO4], labeled as solution B. (CH 3COO)2Cu·H2O was dissolved in 25

ml of double-distilled water to form a Cu2+ solution. Na2MoO4 was dissolved in 25 ml of double-distilled

water to form a MoO₄²⁻ solution.

FIGURE 1: Synthesis scheme of CuMoO₄₄
Copper molybdate: CuMoO₄

Image Credit: Krisha SG and Muthamizh Selvamani

The Cu2+ solution (solution A) was added dropwise to the MoO₄²⁻ solution (solution B) under continuous
magnetic stirring at room temperature. This slow addition helped achieve a homogeneous mixture and
prevented localized supersaturation, which could lead to uneven precipitation. After the complete addition

of the Cu2+ solution to the MoO₄²⁻ solution, CuMoO4 nanoparticles precipitated out of the solution. The

resulting precipitate was collected by filtration.

The collected precipitate was washed three or four times with double-distilled water to remove any
unreacted starting materials and impurities. Subsequently, the precipitate was washed with ethanol to
further purify it and remove any remaining water. The washed precipitate was air-dried at ambient
temperatures for two days. The dried CuMoO4 was then subjected to calcination in a muffle furnace at 600 °C

for five hours. Calcination facilitated the removal of any organic residues and the formation of a well-
crystalline CuMoO4 phase.

Electrochemical sensing
The electrochemical sensing experiments were conducted using a three-electrode system consisting of a
working electrode (glassy carbon electrode, GCE), a reference electrode (silver chloride, AgCl), and a counter
electrode (platinum wire). The GCE, which serves as the primary interface for electrochemical interactions,
was polished sequentially with alumina pastes of different particle sizes (1 μm, 0.3 μm, and 0.05 μm) to
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achieve a mirror-like finish. This step ensured a smooth and clean electrode surface, which is crucial for
reproducible electrochemical measurements. After polishing, the GCE was cleaned by ultrasonication in
double-distilled water for a few minutes to remove any adhering alumina particles and other contaminants.

A CuMoO4 suspension was prepared by dispersing 5 mg of the synthesized CuMoO 4 nanoparticles in 10 ml of

ethanol. This mixture was subjected to ultrasonic agitation for 20 minutes to ensure a uniform dispersion of
the nanoparticles. The cleaned GCE was then coated with 10 μL of the CuMoO4 suspension using the drop-

coating method. This method involves placing a small drop of the suspension onto the GCE surface and
allowing it to spread evenly. The coated electrode was air-dried to allow the ethanol to evaporate, leaving a
thin film of CuMoO4 nanoparticles on the GCE surface. 

The modified GCE, along with the reference and counter electrodes, were immersed in a glass cell containing
the electrolytic solution. The specific composition of the electrolytic solution was chosen based on the
intended electrochemical investigations. This setup created an ideal environment for studying the
electrochemical properties of CuMoO4 and its potential applications, such as in sensors or catalytic

processes. By meticulously preparing and modifying the electrodes and ensuring the correct setup of the
electrochemical cell, reliable and reproducible electrochemical measurements could be achieved, enabling
the detailed study of CuMoO4’s properties and behavior in various applications.

Results
X-ray diffraction analysis of CuMoO4

The crystalline phase and nature of the synthesized CuMoO4 were analyzed by X-ray diffraction (XRD). The

diffraction peaks of CuMoO4 matched well with the standard reference (JCPDS card No. 31-0449). CuMoO 4

typically exists in two forms: the α-phase, which is orthorhombic, and the β-phase, which is triclinic. The
exact phase obtained can depend on the synthesis conditions, such as temperature and method. XRD
analysis can help determine the specific crystal phase of the synthesized CuMoO4. In Figure 2, it shows the

peaks at 2θ: 12.37°, 17.36°, 23.72°, 26.70°, 29.45°, 32.11°, 34.44°, 38.90°, 45.37°, 48.88°, 50.79°, and 53.58°
correspond to (0-11), (-111), (012), (-201), (-212), (112), (2-21), (-231), (0-42), (024), (3-31), and (1-51)
planes of triclinic CuMoO4, respectively. The high intensity and sharp diffraction peaks of the synthesized

CuMoO4 indicate its crystalline nature.

FIGURE 2: An XRD pattern of the CuMoO₄₄
X-ray diffraction (XRD), Copper molybdate (CuMoO₄)
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Morphological analysis of CuMoO4

The synthesized CuMoO4 was then studied for its morphology through field emission scanning electron

microscopy (FE-SEM). In Figure 3(a,b), FE-SEM micrographs of CuMoO 4 showed a rock-like structure and the

presence of CuMoO4 nanoparticles in terms of nanometers. Energy dispersive X-ray spectrometry (EDX) was

used to analyze the chemical composition and purity of CuMoO4. As seen in Table 1, the only elements

present are copper (Cu), molybdenum (Mo), and oxygen (O), which proves that the synthesized CuMoO4 is in

pure form. Additionally, carbon (C) and nitrogen (N) were not identified in the EDX spectrum, confirming
that the synthesized nanoparticles are free of impurities.

FIGURE 3: (a, b) FE-SEM images of CuMoO₄₄ synthesized through
hydrothermal treatment
Field emission scanning electron microscope (FE-SEM), copper molybdate (CuMoO4)

Element Weight% Atomic%

O K 25.13 62.40

Cu L 31.24 19.53

Mo L 43.63 18.07

Totals 100.00  

TABLE 1: EDX analysis result of the synthesized CuMoO₄₄ particles
EDX: energy-dispersive X-ray, CuMoO4: copper molybdate

Differential pulse voltammetry analysis of paracetamol drug
The differential pulse voltammetry (DPV) analysis of drug molecules was conducted using a CuMoO4-

modified GCE with varying concentrations of paracetamol (0.2 to 0.7 μM). Paracetamol exhibited distinct
current responses ranging from 16 to 25 μA at an applied potential of 50 mV/s. Figure 4 shows the DPV
curve illustrating changes in peak current corresponding to the redox reactions of paracetamol at the
CuMoO4 electrode. Each peak represents a different concentration of paracetamol. The gradual linear

increase in current response at different potentials indicates the CuMoO4 sensing capability towards the drug

molecule with successive additions of paracetamol.
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FIGURE 4: Differential pulse voltammetry response for paracetamol
detection using CuMoO₄₄
CuMoO4: copper molybdate

Discussion
We successfully synthesized CuMoO4 using a simple and cost-effective method. The synthesis process plays

a critical role in determining the size, morphology, and crystalline structure of the nanoparticles, which
influence their electrochemical properties [15]. Earlier studies demonstrated the biosynthesis of CuMoO4

using the precipitation method, and its antimicrobial activities were tested against various pathogens [16].

The physical characteristics of CuMoO4 were studied using FE-SEM, EDX, and XRD. XRD analysis of CuMoO4

in this study confirmed its crystalline structure, with diffraction peaks matching standard JCPDS no. 31-
0449. The peaks at 2θ:12.37°, 17.36°, 23.72°, 26.70°, 29.45°, 32.11°, 34.44°, 38.90°, 45.37°, 48.88°, 50.79°, and
53.58° correspond to (0-11), (-111), (012), (-201), (-212), (112), (2-21), (-231), (0-42), (024), (3-31), and (1-
51) planes of triclinic CuMoO4, respectively. The prominent peaks seen in Figure 2 indicate its crystalline

nature. FE-SEM images of CuMoO4 nanoparticles (Figure 3(a,b)) provided insights into their rock-like

structure, with particles being nanometers in size as indicated by the image scale. EDX analysis (Table 1)
confirmed the compound's purity, showing only copper, molybdenum, and oxygen elements present,
demonstrating the synthesized nanoparticle's purity. All these physical surface characteristics underscore
CuMoO4's potential as an exceptional biochemical sensor. CuMoO4 has also shown utility in other fields. Its

dominant nonlinear refraction (NLR) in CuMoO4/polymethyl methacrylate (PMMA) makes it useful for

applications such as lasers and optical switches [17].

CuMoO4 has potential applications in ultralow-temperature cofired ceramic (ULTCC) due to its low relative

permittivity and sintering temperature [18]. A CuMoO4-graphene nanocomposite shows promise for high-

performance supercapacitors [19]. Its negative thermal expansion contributes to its good luminescent and
thermal cycling properties, expanding its potential applications [20]. CuMoO4's sensing capability for

paracetamol was analyzed using DPV, yielding satisfactory results. Current changes were recorded across
varying potentials. In the plot, 'a' represents the initial drug concentration detected by CuMoO4-modified

GCE at 0.5 mV, with its corresponding current response recorded. This process was repeated for higher drug
concentrations, with 'F' indicating the final drug concentration. Recorded current responses ranged from 16
to 25 μA, showing paracetamol's linear response within this range (Figure 4). Coupled with its unique surface
characteristics, CuMoO4's electrochemical activity forms a robust foundation for effective electrochemical

sensing platforms [21]. Cysteine-capped CuMoO4 nanoclusters detected methotrexate [22], highlighting
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CuMoO4's redox properties in sensing paracetamol [23]. Oleic acid-stabilized copper/cuprous oxide

(Cu/Cu2O) nanoparticles also sensed paracetamol [24], while single-walled carbon nanotube/carbon

composite electrode (SWCNT/CCE) detected acetaminophen with a linear response range of 0.2-100.0 μM in
DPV [25]. Paracetamol's adverse effects include gastrointestinal bleeding, asthma, and hypertension [26].

We were able to successfully sense paracetamol using copper molybdate. CuMoO4 might help us to

efficiently identify and biochemically sense paracetamol as its target drug molecule. Future research can
investigate the sensing capabilities of CuMoO4 for environmental pollutants or biomarkers. The

incorporation of CuMoO4 into composite materials can be investigated as it can provide synergistic effects,

enhance sensing properties, and increase selectivity towards drug molecules. Testing the CuMoO4 in real-

world samples such as biological fluids or pharmaceutical formulations can also be done.

Limitation
Limitations include potential challenges in controlling particle size and morphology during synthesis, which
can affect the reproducibility and consistency of the CuMoO4 nanoparticles. Additionally, the

electrochemical performance may be influenced by the presence of interfering substances in real samples.
There is also a need for further optimization to enhance the selectivity and stability of the CuMoO4 sensor.

The long-term stability and repeatability of the sensor in various environmental conditions need to be
addressed. Moreover, scaling up the synthesis process while maintaining quality and performance poses
another challenge.

Conclusions
The synthesis of CuMoO4 nanoparticles was successfully accomplished, with their structural and

morphological characteristics confirmed by XRD, FE-SEM, and EDX analyses. XRD analysis validated the
crystalline structure of the nanoparticles, while EDX confirmed their purity, revealing only the presence of
copper, molybdenum, and oxygen elements. FE-SEM images displayed a distinct rock-like morphology for
the CuMoO4. These comprehensive analyses indicate that the synthesized CuMoO4 nanoparticles are free

from impurities and possess a well-defined structure. Furthermore, the electrochemical properties of
CuMoO4 were found to be highly favorable, suggesting their suitability for sensing applications. Specifically,

CuMoO4 demonstrated excellent performance in detecting paracetamol drug molecules, showcasing high

sensitivity and specificity. This makes CuMoO4 a promising candidate for the development of efficient

electrochemical sensors in pharmaceutical applications. Overall, the study highlights the potential of
CuMoO4 nanoparticles in the field of electrochemical sensing, particularly for detecting pharmaceutical

compounds like paracetamol.
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