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Abstract
Background: We developed a 3D camera system to track motion in a surgical field. This system has the
potential to introduce augmented reality (AR) systems non-invasively, eliminating the need for the invasive
AR markers conventionally required. The present study was performed to verify the real-time tracking
accuracy of this system, assess the feasibility of integrating this system into the surgical workflow, and
establish its potential to enhance the accuracy and efficiency of orthopedic procedures.

Methods: To evaluate the accuracy of AR technology using a 3D camera, a forearm bone model was created.
The forearm model was depicted using a 3D camera, and its accuracy was verified in terms of the positional
relationship with a 3D bone model created from previously imaged CT data. Images of the surgical field
(capturing the actual forearm) were taken and saved in nine poses by rotating the forearm from pronation to
supination. The alignment of the reference points was computed at the three points of CT versus the three
points of the 3D camera, yielding a 3D rotation matrix representing the positional relationship. In the
original system, a stereo vision-based 3D camera, with a depth image resolution of 1280×720 pixels, 30
frames per second, and a lens field of view of 64 specifications, with a baseline of 3 cm, capable of optimally
acquiring real-time 3D data at a distance of 40-60 cm from the subject was used. In the modified system, the
following modifications were made to improve tracking performance: (1) color filter processing was changed
from HSV to RGB, (2) positional detection accuracy was modified with supporting marker sizes of 8 mm in
diameter, and (3) the detection of marker positions was stabilized by calculating the marker position for
each frame. Tracking accuracy was examined with the original system and modified system for the following
parameters: differences in the rotation matrix, maximum and minimum inter-reference point errors
between CT-based and camera-based 3D data, and the average error for the three reference points.

Results: In the original system, the average difference in rotation matrices was 5.51±2.68 mm. Average
minimum and maximum errors were 1.10±0.61 and 15.53±12.51 mm, respectively. The average error of
reference points was 6.26±4.49 mm. In the modified system, the average difference in rotation matrices was
4.22±1.73 mm. Average minimum and maximum errors were 0.79±0.49 and 1.94±0.87 mm, respectively. The
average error of reference points was 1.41±0.58 mm.

In the original system, once tracking failed, it was difficult to recover tracking accuracy. This resulted in a
large maximum error in supination positions. These issues were resolved by the modified system. Significant
improvements were achieved in maximum errors and average errors using the modified system (P<0.05).

Conclusion: AR technology using a 3D camera was developed. This system allows direct comparisons of 3D
data from preoperative CT scans with 3D data acquired from the surgical field using a 3D camera. This
method has the advantage of introducing AR into the surgical field without invasive markers.

Categories: Medical Simulation, Orthopedics, Trauma
Keywords: osteosynthesis, preoperative plan, computed tomography, 3d camera, augmented reality (ar)

Introduction
Augmented reality (AR) is a technology that seamlessly superimposes 3D image data onto the real world.
This technology allows the superimposition of graphics, including text, medical imaging, and preoperative
templating, into the surgeon's visual field in 3D and real time. It is now being implemented in the field of
orthopedic surgery [1]. In joint replacement surgery, the AR visualization of anatomical structures has led to
improved accuracy in the positioning of implants [2-7]. In spine surgery, AR navigation systems have been
developed to assist in the precise insertion of intervertebral devices [8-12]. In trauma care, increases in the
placement accuracy of implants and the decreased use of X-rays with AR, mainly in the treatment of pelvic
fractures, have been reported [13-15]. These applications aim to enable surgeons to perform more precise
operations, ultimately improving clinical outcomes. Despite these advances, the widespread adoption of AR
technology is still in its infancy, and its utility and effectiveness continue to be evaluated.
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There are still several challenges associated with introducing AR technology into orthopedic surgery. First, a
significant hurdle is the static nature of preoperative planning data, which does not consider dynamic
changes during actual surgery [16]. Second, there are potential issues with movement in the targeted
surgical field or obstructions to the surgeon's view during procedures [17,18]. Third, the accuracy and
reliability of AR systems often lack sufficient clinical validation. Technological improvements and
comprehensive clinical trials are required to address these issues. Finally, to implement AR technology in
practical use, user comfort, data updates in response to changes in the field of view, and smooth integration
with visual devices are necessary.

3D camera technology was recently introduced to obtain not only vertical and horizontal information but
also depth information [19,20]. A 3D camera captures and analyzes 3D information on the surgical field,
allowing alignment with the preoperative simulation model. It enables the instantaneous adaptation of
preoperative anatomical data to the changing clinical situation during surgery. Therefore, real-time tracking
with 3D cameras is one of the solutions currently being applied to AR technology.

We developed a 3D camera system to track motion in a surgical field. This system tracks movement in a
surgical field by comparing 3D data based on the surgical field with 3D data from previous CT scans. This
system has the potential to introduce AR systems non-invasively, eliminating the need for the invasive AR
markers conventionally required. The present study was performed to validate the real-time tracking
accuracy of the forearm model using the developed system, assess the feasibility of integrating this system
into the surgical workflow, and establish its potential to enhance the accuracy and efficiency of orthopedic
procedures.

Materials And Methods
CT imaging and creation of 3D data of a forearm model
To evaluate the accuracy of AR technology using a 3D camera, a bone model simulating the forearm was
created. The present study was exempt from IRB approval because it was an experimental study using a bone
model. A normal forearm model was depicted using a 3D camera, and its accuracy was verified in terms of
the positional relationship with a 3D bone model created from previously imaged CT data. The bone model
was made of epoxy resin and was created with surface processing to be depicted by X-rays (TANAC Co., Ltd.).
The bone model was covered with an X-ray transparent elastic material (urethane resin) simulating skin.
Stickers for identifying reference points on the body surface by color and metal ball markers on their
surfaces were placed on the forearm model, and a CT scan was performed. CT images were taken at 120 kV,
100 mAS, a slice thickness of 0.8 mm, and a pixel size of 0.3×0.3 mm (Sensation Cardiac, Siemens). 3D bone
images of the forearm model were created from the Digital Imaging and Communications In Medicine
dataset of the CT scan using image analysis software (ZedView, LEXI Co., Ltd.). 3D bone images of the
forearm model consisted of forearm stereolithography (STL), including the epidermis, bone STL, and marker
STL (Figure 1).

FIGURE 1: 3D data for AR
3D bone images of the forearm model consisting of forearm STL, including the epidermis (a), bone STL (b), and
marker STL (c).

AR: augmented reality; STL: stereolithography

The camera used was a stereo vision-based 3D camera, with a depth image resolution of 1280×720 pixels, 30
frames per second, and a lens field of view (FOV) of 64 specifications, with a baseline of 3 cm, capable of
optimally acquiring real-time 3D data at a distance of 40-60 cm from the subject (aeroTAP, nextEDGE
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Technology). In the present study, four reference markers were applied to the surface of the forearm: three
around the wrist (markers #1, #2, and #3) and one at the bottom center (marker #0), as shown in Figure 2.
This assumes that the lower marker #0 is always captured by the camera, even if the forearm rotates,
ensuring that at least three points including the lower marker #0 are captured by the camera. These three
points are used to align the preoperative forearm 3D model (in computer space) with the real forearm 3D
model constructed in real time by the 3D camera (in real space).

FIGURE 2: Marker placement
In the present study, we adopted a method of attaching four markers to the forearm, consisting of three points
around the wrist (markers #1, #2, and #3) and one point at the lower center (marker #0).

During the alignment, a 4×4 rotation matrix representing the spatial relationship between the spaces is
obtained through singular value decomposition, selecting the closest result from the distances of each pair
of results, based on the combination of three points that are formed from the four markers in the
preoperative forearm space, and three or four markers observable in the real forearm 3D space generated by
the 3D camera. If the base marker #0 on the real forearm 3D model cannot be observed or if the number of
observable markers is less than three, the result is considered indeterminate.

As shown in Figure 3, the 3D camera is positioned facing the forearm from the front, including markers
attached to the forearm and epidermis, to digitize the actual forearm in real time as 3D data. The markers are
extracted from the actual forearm 3D model using marker colors (refer to Figure 3 for the 3D data of the
actual forearm generated by the 3D camera). The positional relationship between the markers of the
preoperative forearm 3D model and the actual forearm 3D model captured by the 3D camera is calculated. By
processing the alignment calculations frame by frame, real-time tracking becomes possible.
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FIGURE 3: 3D camera setting and data conversion
The 3D camera is positioned facing the forearm from the front. Markers are extracted from the actual forearm 3D
model using marker colors (blue markers on the model surface). The positional relationship between the markers
of the preoperative forearm 3D model and the actual forearm 3D model captured by the 3D camera is calculated.

Once the positional relationship between the computer space and the real space is clarified, it is possible to
overlay preoperative 3D on the actual forearm 3D, allowing the overlaid 3D model to be displayed in AR. The
ultimate goal of this project is to overlay the preoperative forearm model on the surgical field using AR
glasses; however, at the current stage, the field of view of the 3D camera has been output as the surgical
field. Markers may similarly be used to align the actual forearm 3D model with the surgical field. By
calculating the positional relationship between the surgical field and the 3D image and projecting the 3D
image onto the surgical field, it was possible to overlay the preoperative forearm 3D image in real time on
the surgical field (Figure 4). The preoperative forearm image being overlaid rotated in accordance with the
rotation of the actual forearm.

FIGURE 4: Process of AR visualization
(a) Before the alignment, (b) after the alignment, and (c) 3D data were displayed after the alignment.

AR: augmented reality

During the process of development, the system was modified to improve tracking accuracy. Improvements
were achieved by enhancing the processing speed and obtained high-resolution 3D depth information. At
the same time, the 3D camera was adapted to a modified version with an image sensor size of 1/3 inch and a
lens FOV of 50, with a baseline of 6 cm. To improve tracking performance, the following modifications were
performed: (1) color filter processing was changed from HSV to RGB, (2) positional detection accuracy was
modified with supporting marker sizes of 8 mm in diameter (the original system had a support marker size
of 20 mm), and (3) the detection of marker positions was stabilized by calculating the marker position for
each frame, tracking it, and identifying the position through a moving average.

The alignment error between the computer space and real space was measured using the following method.
In this system, the forearm was rotated from pronation to supination, and images of nine poses in the
surgical field were captured and stored at approximately 10 degrees each (Figure 5). The alignment of the
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reference points was computed at the three points of CT versus the three points of the 3D camera, yielding a
3D rotation matrix representing the positional relationship. The error between the marker positions
obtained from the rotation matrices calculated for these image alignments and the actual positions was
evaluated using the following parameters: (1) difference in the rotation matrix (mm), (2) maximum and
minimum inter-reference point errors between CT-based and camera-based 3D data (mm), and (3) average
error for the three reference points (mm).

FIGURE 5: Forearm positions for the analysis
Images of the forearm model were taken and saved in nine poses by rotating the forearm from pronation to
supination by approximately 10 degrees each.

Statistical analysis
The accuracies of position estimations were compared between the original system and the modified system.
Results are expressed as the mean±standard deviation. The Shapiro-Wilk test was used to test the normality
of datasets. Parameters were compared between the original system and the modified system using Welch's
t-test. P-values <0.05 were considered to be significant. All statistical analyses were performed using
BellCurve for Excel, Version 2.12 (SSRI Co., Tokyo, Japan), and IBM SPSS Statistics for Windows, Version 24.0
(Released 2016; IBM Corp., Armonk, New York, United States).

Results
The results obtained on tracking accuracy for each position are shown in Table 1. In the original system, the
average difference in rotation matrices was 5.51±2.68 mm. Average minimum and maximum errors were
1.10±0.61 and 15.53±12.51 mm, respectively. The average error of reference points was 6.26±4.49 mm.
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� �
Differences of  rotation matrices
(mm)

Min/max errors of reference points
(mm) 

Average errors of reference points
(mm)

� Positions Original Modified Original Modified Original Modified 

Pronation
Position
1

2.84 3.42 0.49/24.36 0.46/1.59 8.65 1.14

�
Position
2

4.20 2.46 1.07/2.04 0.39/1.13 1.40 0.82

�
Position
3

3.97 2.91 0.96/1.97 0.59/1.27 1.32 0.97

�
Position
4

6.74 3.46 0.91/3.26 0.68/1.45 2.25 1.15

�
Position
5

5.00 3.67 0.62/2.42 0.44/1.67 1.67 1.22

�
Position
6

1.62 2.85 0.34/23.73 0.50/1.34 8.19 0.95

�
Position
7

6.86 5.61 1.81/26.52 0.84/2.42 10.45 1.87

�
Position
8

8.90 6.17 2.05/27.44 1.72/2.92 11.11 2.06

Supination
Position
9

9.50 7.40 1.66/28.04 1.53/3.67 11.30 2.47

� Ave 5.51 4.22 1.10/15.53* 0.79/1.94* 6.26* 1.41*

� SD 2.68 1.73 0.61/12.51 0.49/0.87 4.49 0.58

TABLE 1: Results of tracking accuracy for each position
*: significant differences between the original system and the modified system (P<0.05)

In the modified system, the average difference in rotation matrices was 4.22±1.73 mm. Average minimum
and maximum errors were 0.79±0.49 and 1.94±0.87 mm, respectively. The average error of reference points
was 1.41±0.58 mm.

In the original system, once tracking failed, it was difficult to recover tracking accuracy. This resulted in a
large maximum error in supination positions. This issue was resolved by the modified system. Significant
improvements were achieved in maximum errors and average errors using the modified system (P<0.05).

Discussion
The application of AR in the medical field spans from surgical planning to education and rehabilitation;
however, its implementation and development face several challenges. There are technical constraints, such
as resolution and field of view issues. Current AR devices have a limited field of view and resolution [21-24]
and, thus, do not yet provide the high precision and extensive field of view demanded in the medical field.
Furthermore, although accurate position tracking and superimposition are essential in medical practice,
errors in surgery at sites of variable positions currently limit their application. Another challenge is
compatibility issues with existing systems. Integration with existing medical information systems and
devices involves technical challenges.

The development described in the present study may be a solution for intraoperative positional corrections.
The modification of the tracking system significantly improved tracking accuracy. Many of the methods
reported in previous studies were for areas such as the spine and pelvis, where intraoperative movement is
minimal. Few studies described adapting AR technology for the upper extremities because of the difficulties
associated with the tracking of moving parts, which results in failure. This method, which uses a 3D camera
with real-time intraoperative information updates, may be a solution to the challenges of AR on moving
parts of the body, such as the upper extremities. The results obtained showed that the average errors of the
reference points were <2.0 mm in the modified system. This accuracy is considered to be at a level close to
clinical applications. Another advantage of this technology is that it enables tracking based on markers
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attached to the body surface. This eliminates the need for invasive markers, such as pins that are fixed to
bone, as used in previous studies [25-27]. In addition, the system developed herein is designed to operate on
AR glasses by setting a 3D camera in the surgical field, offering convenience because it does not require a
large-scale system.

The 3D sensor used in the present study was a stereo vision 3D sensor. This method measures the distance
from the parallax of two image sensors. The stereo vision method was selected from various 3D sensors
because it is capable of real-time processing and is resistant to environmental noise. In the present study, a
diffractive optical element laser was used to improve the performance of the stereo vision 3D camera by
emitting textures (random dots and other patterns) with an infrared laser. This resolves the disadvantage of
stereo vision, which is the inability to measure the distance of untextured objects. While other 3D sensor
systems require graphics processing unit and personal computer resources for post-processing, this sensor
features 3D data directly from the sensor. These are the advantages of stereo vision 3D sensors. An increased
processing speed and higher-resolution 3D depth information have improved tracking accuracy. This brings
the clinical application of AR vision to real-time update imaging one step closer.

Limitations
There are still several limitations that need to be addressed for the clinical application of the technology
developed in this study. There was a slight temporal mismatch in corrections for position changes. While it
is possible to track changes in a surgical site, there is a one- to two-second delay. This issue necessitates an
increase in the analysis speed of the program. Another disadvantage is that the sharpness of visualization
decreases depending on the distance to the object. Furthermore, challenges are associated with position
corrections for soft tissue displacement. Further studies are needed on how to compensate for changes in
reference points on the body surface due to incisions or the treatment of surgical sites. The current approach
is to consider reference points in areas where tissue displacement is less likely; however, other methods
need to be examined. Moreover, for future functional expansion, the plan is not only to use the field of view
of a 3D camera as the surgical field but also to develop a system that uses AR glasses (with built-in cameras)
as the surgical field, projecting preoperative 3D images in real time. This will allow these images to be
overlaid on AR glasses without the need to move the gaze from the surgical field to a monitor screen.

Conclusions
AR technology using a 3D camera has been developed. This system allows direct comparisons of 3D data
from preoperative CT scans with 3D data acquired from the surgical field using a 3D camera. The modified
system was able to estimate the position of the surgical field with an average error of 1.4 mm, corresponding
to changes in the position of the surgical field. However, there are still several challenges in integrating 3D
cameras into AR systems. These include high computational demands, sensitivity to lighting conditions,
concerns about accuracy, and issues related to effective deployment and adaptation. This method represents
an advancement in the potential to introduce the latest AR imaging to the surgical field without using
invasive reference markers.
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