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Abstract
Background
Deep brain stimulation (DBS) is a well-recognised treatment for advanced Parkinson’s disease (PD) patients.
Structural brain alterations of the white matter can correlate with disease progression and act as a
biomarker for DBS therapy outcomes. This study aims to develop a machine learning-driven predictive
model for DBS patient selection using whole-brain white matter radiomics and common clinical variables.

Methodology
A total of 120 PD patients underwent DBS of the subthalamic nucleus. Their therapy effect was assessed at
the one-year follow-up with the Unified Parkinson’s Disease Rating Scale-part III (UPDRSIII) motor
component. Radiomics analysis of whole-brain white matter was performed with PyRadiomics. The
following machine learning methods were used: logistic regression (LR), support vector machine, naïve
Bayes, K-nearest neighbours, and random forest (RF) to allow prediction of clinically meaningful UPRDSIII
motor response before and after. Clinical variables were also added to the model to improve accuracy.

Results
The RF model showed the best performance on the final whole dataset with an area under the curve (AUC) of
0.99, accuracy of 0.95, sensitivity of 0.93, and specificity of 0.97. At the same time, the LR model showed an
AUC of 0.93, accuracy of 0.88, sensitivity of 0.84, and specificity of 0.91.

Conclusions
Machine learning models can be used in clinical decision support tools which can deliver true personalised
therapy recommendations for PD patients. Clinicians and engineers should choose between best-
performing, less interpretable models vs. most interpretable, lesser-performing models. Larger clinical trials
would allow to build trust among clinicians and patients to widely use these AI tools in the future.

Categories: Neurosurgery, Radiology, Healthcare Technology
Keywords: parkinson’s disease, deep brain stimulation, artificial intelligence, interpretability, radiomics, machine
learning

Introduction
More than 10 million people are living with Parkinson’s disease (PD) worldwide, with men 1.5 times more
likely to have PD than women. In 2016, about 6.1 million people were living with PD, and the age-
standardised rate of prevalence increased by 21.7% from 1990 to 2016. The clinical diagnosis of PD is
challenging and correct approximately 50% of the time. Ancillary tests including genetic testing, olfactory
testing, MRI, and dopamine-transporter single-photon emission CT can support clinical diagnostic
decisions. The cardinal symptoms of the disease are resting tremors, rigidity, and bradykinesia. Several
scales are used in clinical practice to assess the severity of PD and patient disability, with the most common
ones being the modified Hoehn Yahr scale and the Movement Disorder Society Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS). The imaging workup for PD includes several imaging modalities to mainly
exclude any other causes that might be the culprits for the patient’s symptomatology. The management of
PD is primarily medical to control the symptoms and minimise the adverse effects of levodopa, which is the
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gold standard in PD treatment. However, when motor complications emerge and the medical treatment no
longer provides a stable and predictable therapeutic effect, a surgical approach is the next step. This usually
includes deep brain stimulation of the subthalamic nucleus (DBS-STN) which provides short and long-term
improvement of the patient’s symptoms [1]. Despite careful selection of patients, some will not show
improvement in motor symptoms and quality of life [2]. Several factors have been considered as
preoperative predictive values for DBS-STN outcomes. Preoperative severe quality of life impairment,
levodopa responsiveness, and low body mass index are some of the predictive factors in a patient’s
postoperative quality of life [3]. Machine learning methods are increasingly used in medical practice to aid
clinical prediction models. The difference from traditional statistics lies in the ability of machine learning
models to be trained in existing data and generate outcome predictions for new patients. In recent years,
radiomics has been increasingly used in oncology to predict treatment responses. It refers to a set of
mathematical equations which produce large amounts of quantitative features extracted from medical
images (e.g., MRI) in a non-invasive and cost-effective manner. These large amounts of quantitative features
extracted and analysed by machine learning techniques can reveal interrelationships between the pixels in
the medical image, which, in turn, can correlate with the pathophysiology of a disease and act as a
biomarker. The radiologists’ reporting of medical imaging can be enhanced with radiomics analysis to offer
additional information to clinicians. Radiomics has also been used in PD, but in the majority of cases, it has
focused on specific regions of the brain, such as the substantia nigra [4]. Previous work has also shown that
radiomics technology can detect changes in the white matter of healthy people [5]. White matter alterations
can be an early sign of early-stage PD, as it often precedes gray matter loss [6]. In our study, we present an
approach with open-source software and machine learning techniques to analyse preoperative whole-brain
white matter MRI scans in PD patients who subsequently underwent a DBS-STN procedure. We aim to
establish a radiomics model based on whole-brain white matter as a predictive tool of good versus
suboptimal motor response after DBS-STN. We hope to create a proof-of-concept tool that would be easily
interpretable and could be used to counsel patients and clinicians faced with the choice of DBS versus other
therapies such as levodopa and apomorphine pumps.

This article was previously presented as a meeting poster at the 2023 European Association of Neurosurgical
Societies Annual Scientific Meeting on 26 September 2023.

Materials And Methods
Data of patients who received DBS-STN between 2007 and 2021 were retrospectively collected. A total of 125
cases were assessed for eligibility in the study. Five (4%) cases did not have either complete or good-quality
MRIs and were excluded. Finally, 120 cases were included in the study (Figure 1).
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FIGURE 1: Flowchart of the study population and selection process for
good versus suboptimal responders.
UPDRS III = Unified Parkinson’s Disease Rating Scale-part III

Ethical approval
This study was approved by the relevant ethics committee board (approval number: 273497) of the National
Institute of Health Research in the United Kingdom and was conducted in accordance with the Declaration
of Helsinki.

Patient selection
Patients who met the clinical criteria for DBS underwent a multidisciplinary team review by an experienced
movement disorders neurologist, neurosurgeon, and neuropsychologist to decide on the operation. The
inclusion criteria were idiopathic levodopa-responsive PD with troublesome motor fluctuations despite
optimal medical therapy, structurally normal MRI brain scans, and no psychiatric disorders. The exclusion
criteria included atypical PD, cognitive impairment, psychiatric disorders and clinical comorbidities
precluding the safe operation and implantation of the DBS. Clinical (Table 1) and imaging data were
collected. The best medication-on UPDRSIII motor score was compared to the best medication-
on/stimulation-on UPDRSIII motor score one year after DBS surgery. Following the rationale of Habets et al.
[7], patients were categorised as good responders versus suboptimal responders if, one year following DBS
implantation, they experienced a ‘clinically meaningful’ improvement in their best medication-
on/stimulation-on UPDRSIII motor score. ‘Clinically meaningful’ was defined as a reduction in the UPDRSIII
motor score of at least 5 points compared to the preoperative UPDRSIII score. The decision to compare
optimal medical treatment preoperative UPDRSIII versus the best optimal combination treatment
postoperative (medication and DBS) was intentional to reflect a pragmatic assessment of how the patients
and clinicians perceive the symptoms of the disease with optimal therapies rather than report separate off-
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medication/on-DBS scores. A similar approach was used in recent literature [7,8]. The one-year interval was
considered appropriate as it allows enough time for the optimisation of DBS settings while being short
enough to avoid time-related confounding factors such as motor deterioration due to disease progression.

Baseline Whole group Good responders Suboptimal responders P-value (<0.05)

Number of patients 120 (100%) 56 (46.7%) 64 (53.3%)  

Age 58.7 (7.4) 58.1 (7.4) 59.1 (7.5) 0.44

Female 39 (32.5%) 19 (34.5%) 20 (30.7%) 0.80

Age at disease onset 49.51 (8.4) 48.9 (9) 49.9 (7.9) 0.69

Disease duration (months) 100.3 (48.3) 104.2 (50.49) 96.9 (46.5) 0.65

UPDRS III off preoperative 44 (13.5) 46.9 (13.5) 41.5 (13.2) 0.014*

UPDRS III on preoperative 16.3 (6.9) 16.8 (7.2) 15.8 (6.7) 0.55

LEDD preoperative 1,322 (557) 1,277 (499) 1,360 (603) 0.71

NMSS preoperative 48.8 (31.1) 49.1 (29.7) 48.5 (32.4) 0.74

H&Y 1 2 (1.5%) 0 (0%) 2 (3%) 0.55

H&Y 1.5 3 (2.5%) 1 (2%) 2 (3%) 1.0

H&Y 2 25 (20%) 10 (18%) 15 (23%) 0.66

H&Y 2.5 54 (45.5%) 21 (38%) 33 (51%) 0.23

H&Y 3 28 (23.5%) 18 (32%) 10 (16%) 0.11

H&Y 4 8 (7%) 6 (11%) 2 (3%) 0.17

PDQ-39 preoperative 62 (24.2) 62.4 (27.6) 61.7 (21.2) 0.81

TABLE 1: Population characteristics at baseline in this study grouped by good versus suboptimal
responders.
Values inside parentheses are either percentages or mean values with standard deviations. Asterisks (*) denote statistical significance. UPDRS III off and
UPDRS III on show a statistically significant difference. H&Y is measured in the on state.

UPDRS III = Unified Parkinson’s Disease Rating Scale-part III; LEDD = levodopa equivalent daily dose; NMSS = Non-motor Symptoms Scale; H&Y =
Hoehn and Yahr scale from 1 to 4; PDQ-39 = Parkinson’s Disease Quality of Life 39 Items Scale

Surgery
The DBS was implanted with the patients awake, aided by microelectrode recordings by two senior clinicians
(NH, IHL). All patients received the Medtronic 3389 DBS lead in both STN nuclei on the trajectory that
achieved the maximum clinical response intraoperatively. In addition, after the implantation of the
electrodes and before the final stage of the implantable pulse generator placement, the patient was moved
to the radiology department for an MRI. If a DBS lead had an error of more than 2 mm off the ideal STN
trajectory, it was repositioned the same day. Therefore, all patients included in the study cohort completed
the surgery with the best possible DBS electrode placement based on imaging on the day of surgery and
intraoperative clinical response.

MRI acquisition
The MRI scanner was the Magnetom Avanto 1.5 T (Siemens, Erlangen, Germany). The sequence used for the
analysis in this study was a preoperative T1-weighted (T1W) of the whole brain with a voxel size of 1.0 × 1.0
× 1.0 mm, repetition time of 1,900 ms, time to echo of 3.35 ms, and field of view of 280.

Image processing
The T1W images were imported to the SPM12 software tool (www.fil.ion.ucl.ac.uk/spm) in NIfTI format and
the automatic segmentation module was used to produce white matter (WM) and grey matter (GM)
segmentations. The WM and GM image volumes were inspected and corrected by the senior neurosurgeon
(NH) using the software ITK-SNAP (www.itksnap.org). To proceed to the radiomics analysis, the popular
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open-source PyRadiomics package (pyradiomics.readthedocs.io) was used in Python 3.7. The package
performs the following pre-processing steps: (a) resampling of the images to a single-voxel resolution of 1 ×
1 × 1 mm by linear interpolation and (b) the greyscale intensities of each image discretised and normalised
with a fixed bin width of 4.125. This was chosen to maximise the reproducibility of results. A total of 107
radiomics features were produced for each case. The features were of the following categories: 18 first-order
statistics (ford), 24 grey-level cooccurrence matrix (glcm), 14 grey-level dependence matrix (gldm), 16 grey-
level run length matrix (glrlm), 16 grey-level size zone matrix (glszm), five neighbouring grey tone
difference matrix (ngtdm), and 14 shape-based features (2dshape).

Feature selection
The extracted radiomics features dataset was standardised with a z-score normalisation such that each
feature’s mean would be 0 and the standard deviation would be 1. This enabled the values of the dataset
which by default have different sizes/orders of magnitude to be compared without influencing the weights of
the statistic analysis. The next important step was to select the most relevant features. When creating
machine learning models, one of the key problems that can lead to overfitting is the low sample-to-feature
ratio. A generic experience-based rule is to have a dataset of at least 10 samples for each feature selected. In
this study, with a total of 120 cases with each case producing 107 features, it was imperative to select only a
small number of the most relevant features to construct the model. The maximum relevance minimum
redundancy (mRMR) [9] algorithm was used for this selection process. This algorithm works in two steps. In
the first step, features of maximum relevance with the desired outcome (in our case good vs. suboptimal
response) are chosen. In the second step, from the most relevant features, those with the minimum
redundancy between them are ranked.

Machine learning models
A variety of popular machine learning models that explain linear or non-linear relations of the features were
tried on the data. The models used were regularised binary logistic regression (LR), Gaussian naïve Bayes
(NB), K-nearest neighbours (KNN), support vector machines classifier (SVC) with linear kernel, and random
forest classifiers (RF). Due to the relatively small number of cases and the large number of features even
despite the mRMR feature selection process, the machine learning models underwent a bootstrap training
procedure to assess their stability and allow the choice of the most robust between them. The bootstrap
approach consisted of subsampling the dataset 1,000 times creating a training and test set of equal size (N/2
= 60 cases). To evaluate their respective performance, the area under the curve (AUC) of the receiver
operating characteristics curve (ROC) was used. To quantify how stable the model was in these 1,000
bootstrapping training sessions, the relative standard deviation (RSD) was used. The RSD is derived using
the following formula: RSD = σAUC/μAUC, where σAUC and μAUC are the standard deviation and mean of
each of the bootstrapped training sessions, respectively.

Statistical analysis
The statistical analysis was performed with the Scikit-learn package in Python 3.7. Normally distributed data
were evaluated with independent-samples Student’s t-test, the non-normally distributed data were tested
with the Mann-Whitney test, and categorical variables were tested using the chi-square test. The normality
test used was the Kolmogorov-Smirnov. To compare ROC curves, the Delong test was used while during the
construction of the confusion matrices, the optimal classification threshold was calculated by Youden’s
index. Visualisations were done using the Scikit-learn package (matplotlib and seaborn libraries). The
statistical significance level was set at a two-tailed p-value <0.05.

Results
There were no significant differences in the demographics between the two subgroups of good versus
suboptimal DBS responders except for the UPDRSIII off score (Table 1). After one year of follow-up, the
whole group improved on average in all domains. The UPDRSIII on score improved from 16.3 to 13.73 (p =
0.001), there was a significant LEDD reduction from 1,322 to 764 (the mean % decrease was 40.3%) (p <
0.001), the PDQ-39 improved from 62 to 43.6 (p < 0.001), and, interestingly, the non-motor symptoms of PD
(NMSS) reported by the patient improved from 48.8 to 38.3 (p < 0.001). The on-state Hoehn and Yahr Scale
preoperatively to follow-up showed the de-escalation of patients’ disease severity primarily from Hoehn and
Yahr Scale 3 and 2.5 to 2 after DBS (Table 2). Moreover, from within the whole group analysis after one year,
two additional findings emerged when comparing the good UPDRSIII responders versus the suboptimal
ones. There was a statistical significance of less LEDD usage at follow-up (p = 0.049) and better PDQ-39 at
follow-up (p = 0.013) for good DBS responders.
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Baseline, whole
group

1 year, whole
group

P-value
(<0.05)

1 year, good
responders

1 year, suboptimal
responders

P-value
(<0.05)

Number of patients 120 (100%) 120 (100%)  56 (46.7%) 64 (53.3%)  

UPDRS III ON 16.3 (6.9) 13.73 (8.2) 0.001* 9.05 (5.05) 17.8 (8.3) <0.001*

UPDRS III ON (%
changes)

 -15.7%  -44.6% 0.12%  

LEDD 1,322 (557) 764 (545) <0.001* 658.5 (502.4) 854.4 (567.9) 0.049*

LEDD (% changes)  -40.3%  -48.1% -33.5%  

NMSS 48.8 (31.1) 38.3 (31.8) <0.001* 37.2 (32.6) 38.8 (31.1) 0.784

H&Y 1 2 (1.5%) 5 (4.2%) 0.44 5 (9%) 0 0.042*

H&Y 1.5 3 (2.5%) 8 (6.7%) 0.21 7 (12.7%) 1 (1.5%) 0.037*

H&Y 2 25 (20%) 51 (42.5%) 0.001* 38 (69%) 13 (20%) <0.001*

H&Y 2.5 54 (45.5%) 21 (30%) 0.023* 3 (5.4%) 33 (50.7%) <0.001*

H&Y 3 28 (23.5%) 17 (14.1%) 0.09 2 (3.6%) 15 (23%) 0.005*

H&Y 4 8 (7%) 3 (2.5%) 0.21 0 3 (4.6%) 0.30

PDQ-39 62 (24.2) 43.67 (17.4) <0.001* 37.9 (16.1) 46.5 (18.2) 0.013*

PDQ-39 (%
changes)

 -26.3% (34.4)  -42.2% (21.2) -13.3% (38.4) <0.001*

TABLE 2: Baseline versus one-year follow-up of the whole group and good versus suboptimal
responders subgroups.
Values inside parentheses are either percentages or mean values with standard deviations. Asterisks (*) denote statistical significance. H&Y is measured
in the on state.

UPDRSIII = Unified Parkinson’s Disease Rating Scale-part III; LEDD = levodopa equivalent daily dose; NMSS = Non-motor Symptoms Scale; H&Y =
Hoehn and Yahr scale from 1 to 4; PDQ-39 = Parkinson’s Disease Quality of Life 39 Items Scale

Feature selection
The radiomics analysis of MRI scans produced 107 features for each patient. Using the mRMR method a total
of seven features were selected based on most relevance and least redundancy, namely, glcm_Maximal
Correlation Coefficient, shape_LeastAxisLength, firstorder_Skewness, firstorder_90Percentile,
glcm_ClusterShade, glcm_Informational Measure of Correlation2, firstorder_Mean (Figure 2).
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FIGURE 2: Correlation heatmap between the radiomics selected features
with the mRMR methodology.
The numbers reported in the heatmap are the Pearson correlation coefficients.

GLCM = grey-level co-occurrence matrix; MCC = maximal correlation coefficient; IMC2 = information measure of
correlation 2; mRMR = maximum relevance minimum redundancy

 

From the seven features, five showed statistical differences in their respective distributions between good
versus suboptimal outcomes, as demonstrated by the Mann-Whitney U test (p < 0.001) (Figure 3), while
FirstOrder_Skewness (p = 0.131) and Shape_LeastAxisLength (p = 0.134) did not. Worth noting that the larger
the magnitude of the mean values of the features, the bigger the heterogeneity of the grey-level texture of
the MRI image analysed. All seven features followed this trend between good and suboptimal groups where
the suboptimal responders showed a larger magnitude of absolute mean values.
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FIGURE 3: Distribution of good versus suboptimal response.
Mann-Whitney test p < 0.001 except for FirstOrder_Skewness p = 0.131 and Shape_LeastAxisLength p = 0.134.
Larger absolute mean values of the features correspond to increased heterogeneity of the grey-level texture of
the MRI image analysed.

DBS = deep brain stimulation; GLCM = grey-level co-occurrence matrix; MCC = maximal correlation coefficient;
IMC2 = informational measure of correlation 2

Evaluation and selection of machine learning models
The bootstrap procedure was run 1,000 times, using the seven features selected above (Figure 4). In the test
set, the average AUC values of the LR, SVC, NB, KNN, and RF were 0.864 (95% CI = 0.788-0.923), 0.754 (95%
CI = 0.661-0.83), 0.813 (95% CI = 0.747-0.874), 0.732 (95% CI = 0.621-0.823), and 0.844 (95% CI = 0.732-
0.917), respectively. The respective RSD indices on the test set for LR, SVC, NB, KNN, and RF were 3.88, 4.71,
3.17, 7.01, and 3.76, respectively. The RF model showed better performance but slightly less stability than
the NB model, as shown by the RSD results (Table 3). It is worth introducing at this point the concept of
interpretability of the machine learning models. The predictions made by a given model can have significant
consequences for the medical teams and patients. The more easily explainable the model in human terms is
as to how it reaches a prediction decision, the more easily it can be trusted by the medical teams and
patients. Between the models analysed in this paper, LR and SVC are the most easily explainable while KNN,
NB, and RF are less explainable [10]. Between the easily interpretable machine learning models (LR and
linear SVC), the LR model showed better performance and stability (AUC 0.864 vs. 0.855 and RSD 3.88 vs.
4.71). For the rest of the analysis, a choice was made to demonstrate head-to-head the best overall
performing but less interpretable model (RF) and the best performing among easily interpretable models
(LR).
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FIGURE 4: Densities of the AUC for the models analysed after 1,000
bootstrap repetitions.
AUC = area under the curve; lr = logistic regression; svc: support vector machine linear kernel; nb: naïve Bayes;
knn = K-nearest neighbours; rf = random forests

Model name AUC (std) CI
RSD (std)
CI

Accuracy (std) CI Sensitivity (std) CI Specificity (std) CI

Logistic regression
0.864 ± 0.034 (0.788–
0.923)

3.88
0.778 ± 0.042 (0.696–
0.855)

0.752 ± 0.083 0.571–
0.897

0.801 ± 0.079 (0.622–
0.941)

Support vector machine
linear

0.855 ± 0.040 (0.756–
0.919)

4.71
0.768 ± 0.047 (0.661–
0.852)

0.718 ± 0.100 (0.500–
0.885)

0.810 ± 0.088 (0.622–
0.950)

Naïve Bayes
0.904 ± 0.029 (0.844–
0.956)

3.17
0.821 ± 0.037 (0.750–
0.889)

0.780 ± 0.072 (0.633–
0.906)

0.855 ± 0.059 (0.722–
0.946)

K-nearest neighbours
0.832 ± 0.058 (0.696–
0.922)

7.01
0.756 ± 0.059 (0.623–
0.859)

0.707 ± 0.112 (0.469–
0.903)

0.799 ± 0.114 (0.552–
0.974)

Random forests
0.922 ± 0.035 (0.841–
0.975)

3.76
0.856 ± 0.045 (0.766–
0.936)

0.804 ± 0.086 (0.625–
0.964)

0.901 ± 0.072 (0.743–
0.998)

TABLE 3: Machine learning models predicting a good versus suboptimal motor UPDRSIII outcome
after one-year follow-up.
 AUC, RSD of the AUC, accuracy, sensitivity, and specificity are reported together with standard deviation and 95% confidence intervals.

UPDRSIII = Unified Parkinson’s Disease Rating Scale-part III; AUC = area under the curve; RSD = relative standard deviation

The ROC curves of the two selected models LR (most interpretable) versus RF (least interpretable) had a
mean AUC of 0.864 ± 0.034 versus 0.922 ± 0.035, mean accuracy of 0.778 ± 0.042 versus 0.856 ± 0.045, mean
sensitivity of 0.752 ± 0.083 versus 0.804 ± 0.086, and mean specificity of 0.801 ± 0.079 versus 0.901 ± 0.072.
Although the RF model was better on all metrics, i.e., more pronounced specificity between the two, the
respective ROC plots (Figure 5) show similar characteristics. When applying the DeLong test to these two
curves, there was no statistical difference (p = 0.347).
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FIGURE 5: Comparative graphs of ROC of the radiomics models
between LR and RF classifiers after the bootstrap procedure.
The shaded grey areas are the standard deviations of the curves. The DeLong test between the curves was non-
significant (p = 0.347).

ROC = receiver operator characteristics curve; AUC = area under the curve; LR = logistic regression; RF =
random forests

Machine learning models of clinical variables
As a next step, the clinical variables were used both with the RF classifier and the LR classifiers to produce
clinical variable-only models. The RF clinical-only model had an AUC, accuracy, sensitivity, and specificity
of 0.663 ± 0.038, 0.618 ± 0.061, 0.561 ± 0.174, and 0.667 ± 0.058, respectively, while the LR clinical-only
model had an AUC, accuracy, sensitivity, and specificity of 0.612 ± 0.05, 0.59 ± 0.039, 0.539 ± 0.096, and
0.631 ± 0.094, respectively (Figure 6).

FIGURE 6: Comparative graphs of ROC of (A) clinical-only in blue
versus the radiomics model in green for logistic regression and (B)
between clinical-only in blue versus the radiomics model in green for
random forest classifier after the bootstrap procedure.
The shaded grey areas are the standard deviations of the curves. The DeLong test between the curves was
significant in both cases.

ROC = receiver operator characteristics curves; AUC = area under the curve
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Performance of the models on the entire dataset
To assess the final prediction performance of the RF and LR models, the entire dataset was used for
classification. The experiments were run in three stages. Stage I included the clinical models on their own,
stage II included the radiomics models on their own, and stage III models were run including both the
clinical and radiomics variables. The stage III joint LR model achieved an AUC of 0.93, accuracy of 0.88,
sensitivity of 0.84, and specificity of 0.91. The stage III joint RF model achieved an AUC of 0.99, accuracy of
0.95, sensitivity of 0.93, and specificity of 0.97. The ROC curves are placed in the same graphs for
comparison in Figure 7.

FIGURE 7: ROC of the joint models of logistic regression versus
random forests.
The models reflect the final evaluation of the whole dataset.

In blue: clinical-only variables; in yellow: radiomics-only features; in green: the joint model with both clinical +
radiomics features.

ROC = receiver operator characteristics curves; AUC = area under the curve

Using Youden’s index, the optimal threshold for the LR model was 0.700 while for the RF model was 0.512.
This meant that any patient case for which the model gave a predicted probability above 0.7 for the LR or
above 0.512 for the RF classifier was counted as a good responder. With this in mind, the confusion matrices
were constructed (Figure 8). The confusion matrix of the LR gave a true-positive rate (TPP) of 0.84 and a
false-positive rate of 0.10. This corresponds to a positive-predictive value (PPV) of 0.88 and a negative-
predictive value of 0.86. The RF classifier confusion matrix gave a TTP of 0.96 and a false-positive rate of
0.03. This corresponds to a PPV of 0.96 and an NPV of 0.94. In such a classification problem, the gravity of
making a misclassification is more pronounced on the false-positive rate as it would likely erroneously guide
a treatment decision toward performing a DBS surgery for a patient who is likely to have a suboptimal
response. Both LR and RF models have a fairly low false-positive rate for medical standards.
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FIGURE 8: Confusion matrices of (A) logistic regression and (B) random
forest classifier.
The y-axis reports the model predictions while the x-axis shows the true classification of 0 (suboptimal) versus 1
(good) UPDRSIII responses.

UPDRSIII = Unified Parkinson’s Disease Rating Scale-part III

Interpretability of the models and feature importance
Both models based on LR and RF performed fairly well, with the RF being superior in all metrics. There is a
difference though. The RF algorithm is an ensemble method of many decision “trees” which uses random
sampling of cases and variables. Each tree of this “forest” has branches, where in each branch a feature is
used to classify the cases of our dataset based on an index of how pure the data appear after each branch of
the tree is created. Between all these trees in the “forest”, for each case, there is a voting process of a
majority vote to classify whether a case belongs to the “good” or the “suboptimal” group, as in our case.
Therefore, a human would have difficulty identifying unique rules as to how this classification was done
inside this “forest” of trees. This is why RF models are still considered more of a “black box” machine
learning technique. The LR models as per the assumption of linear relations between the features of the data
allow for more interpretable or “white-box” machine learning by inspecting the relevant β coefficients of
the model and their widely used odds ratios. For our dataset, they are shown in Figure 9 as normalised odds
ratios.
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FIGURE 9: Feature relative importance by normalised odds ratio.
The features on the right side of the plot (positive) contribute to better DBS response postoperatively while the
features on the left side contribute to more weak DBS  response postoperatively. To note: _glcm_ClusterShade
and _firstorder_Skeweness are expressed in negative values; therefore, a decrease in their values corresponds
to higher odds of good response after DBS.

UPDRSIII = Unified Parkinson’s Disease Rating Scale-part III; LEDD = levodopa equivalent daily dose; NMSS =
Non-motor Symptoms Scale; H&Y = Hoehn and Yahr scale from 1 to 4; PDQ-39 = Parkinson’s Disease Quality of
Life 39 Items Scale; DBS = deep brain stimulation; GLCM = gray-level co-occurrence matrix; MCC = maximal
correlation coefficient; IMC2 = informational measure of correlation 2

In addition, single case interpretation of a prediction could be sought by the clinical team and possibly
explained to the patient using the Python package local interpretable model agnostic explanation (LIME)
which is an effort to allow maximum interpretability when dealing with ML models. In Figure 10, one of the
cases from the dataset was used as a prediction example aided by LIME visualisation. This is a patient who
indeed had a suboptimal response to UPDRSIII post-DBS. The visualisation shows how most of the features
contribute toward this prediction.

FIGURE 10: LIME visualisation of an individual patient case where the
model attempts to explain how the various features contributed to the
prediction of suboptimal response.
LIME = local interpretable model agnostic explanation; DBS = deep brain stimulation; UPDRSIII = Unified
Parkinson’s Disease Rating Scale-part III; PDQ-39 = Parkinson’s Disease Quality of Life 39 Items Scale; GLCM =
gray-level co-occurrence matrix; MCC = maximal correlation coefficient; IMC2 = informational measure of
correlation 2
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Discussion
This study originated from the need to improve patient selection for this invasive therapy. The levodopa
challenge, which is the most used preoperative test for DBS patient selection worldwide, showed that
individual patient improvement after the therapy was inaccurately predicted with a large range of up to 30
UPDRSIII points [11]. A machine learning algorithm that could identify/predict which patients will benefit
the most from DBS surgery would pave the way not only to a more cost-effective selection of candidate
patients but also give confidence to potentially consider cohorts of older people [12] and those with
comorbidities [13] who are for now discouraged on risk-benefit assessment. Our results can be interpreted as
a proof-of-concept machine learning patient selection tool produced by an easy-to-implement imaging
analysis pipeline. The radiomics analysis focused on whole-brain white matter. The best performer RF
model combining clinical and radiomics variables on the whole dataset showed an AUC of 0.99 and accuracy
of 0.94 while the best most easily interpretable LR model showed an AUC of 0.92 and accuracy of 0.82.

The ground truth debate and literature review
A key issue to consider when training machine learning models for predictions in the medical field is what
should be used as the “ground truth” for classifying patients’ outcomes. In our study, we adopted the 5-point
difference between the best on-state UPDRSIII preoperatively and the best on-state UPDRSIII one-year
postoperatively following DBS surgery. We consider this a pragmatic approach that can capture the additive
or even synergistic therapeutic effect on motor symptoms of DBS on top of the best oral medical
treatment. This concept was also used by Habets et al. who modelled only clinical variables to predict strong
or weak DBS responders. In their model, using LR, they achieved an average AUC of 0.79 and an accuracy of
0.78 [7,8]. A different group used as “ground truth” the 30% decrease preoperatively of the Parkinson’s
Disease Composite scale, (a scale that measures disease severity taking into consideration motor and non-
motor symptoms as well as treatment-related complications) while using radiomics of the amygdala and
hippocampus to classify good versus bad responders. Their LR model achieved an average AUC and accuracy
of 0.98 and 0.96, respectively [14]. A third group used the off-state UPDRSIII (motor symptoms assessed
without any medication) with a 30% cut-off decrease with respect to the postoperative off-state UPDRSIII.
The analysis consisted of the subthalamic nucleus radiomics with a specific MRI sequence that is not widely
used in all centres. In their LR model, they achieved an AUC and accuracy of 0.85 and 0.82, respectively
[15]. The studies that have been published so far on this subject are summarised in Table 4.

Study Patients
Ground
truth

Model building
clinical
variables

Model building
radiomics
variables

MRI sequence
Best machine
learning
model

AUC Accuracy

Habets et al.
(2022) [8]

322
UPDRSII,
III, IV on
state

Yes N/A N/A
Logistic
regression

0.76 0.77

Saudargiene et al.
(2022) [13]

34
PDCS on
state

N/A Yes
T1, T2
amygdala,
hippocampus

Logistic
regression

0.96 0.98

Liu et al. (2021)
[14]

33
UPDRSIII
off state

N/A Yes
T2 GRE
subthalamic
nucleus

Logistic
regression

0.85 0.82

This study – best-
performing model

120
UPDRSIII
on state

Yes  Yes
T1 white matter
whole brain

Random
forests

0.99 0.94

This study - most-
interpretable
model

120
UPDRS III
on state

Yes Yes
T1 white matter
whole brain

Logistic
regression

0.92 0.82

TABLE 4: Previous studies in the literature in comparison with the current study.
PDCS = Parkinson’s Disease Composite Scale; UPDRSIII, IV = Unified Parkinson’s Disease Rating Scale-part III, IV; GRE = gradient echo MRI
sequences; T1, T2 = MRI T1 and T2 sequences; AUC = area under the curve

In light of these studies, there is scope to discuss what should be the ground truth for similar future research
to arrive at clinically meaningful prediction tools. Taking into consideration that DBS has a clear and robust
symptomatic effect on motor symptoms independent of concomitant dopaminergic medications and that its
main indication for the treatment of PD is to improve troublesome motor fluctuations/complications,
probably the ideal ground truth would be a combination of UPDRSIII with UPDRSIV scoring. The former
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measures the net motor improvement, while the latter assesses the improvement in treatment-related motor
complications. One would even argue that selecting off-state UPDRSIII rather than on-state UPDRSIII (as
done in our study) would better capture the effect of solely the stimulation on motor symptoms. To our
knowledge, this is the largest trained machine learning model for predicting the good motor outcomes of
DBS-STN based on white matter analysis with preoperative radiomics. It is also the first to include both
radiomics and clinical variables. The strength of this study is that it allows easy replication by using open-
source software, Python packages, which are very popular in data science combined with a standard MRI
sequence (T1W) that is always available in preoperative patients. A clinical tool for predicting good motor
outcomes after DBS-STN would be extremely helpful in patient selection and counselling. Between the
clinical variables, the preoperative UPDRSIII on and preoperative UPDRSIII off showed a statistical
difference in univariate analysis between good and suboptimal responders (Table 1). Based on the odds ratio
(Figure 9), a higher UPDRSIII preoperatively seems to predispose to better DBS response. In the literature,
there is an established relationship between higher UPDRSIII preoperative scores and better motor
improvement after DBS [16]. This may have clinical importance during patient selection and counselling: for
example, a patient with an already good preoperative motor response may need to be told that the therapy
effects on purely the motor component may not be so striking after DBS and therefore have a lower
expectation on this domain. Similar findings have been observed in long-term DBS studies as well [8,17]. At
the one-year follow-up, the whole group improved statistically significantly in the key domains of UPDRSIII,
LEDD usage, NMSS, and PDQ-39 (Table 2). Interestingly, when comparing the PDQ-39 at one year between
the good versus suboptimal group there was statistical significance in favour of the good responders (p =
0.0013). The good responders had on average greater positive changes in their PDQ-39 42.2% versus 13.3%
(Table 2), therefore, perceived from the patient’s point of view a better response to treatment (Figure 11). It
is worth noting that the people who had an improved PDQ-39 are also “suboptimal responders.” This finding
could signify that the “ground truth” threshold used for this analysis may be somewhat less strict or that the
motor symptoms improvement does not necessarily correlate with PDQ-39 outcomes. The literature
concerning this has shown mixed results where studies have shown a positive correlation between UPDRS
response and patient-reported quality of life improvement [18], while in other studies the QoL seems to
relate more to non-motor symptoms of PD rather than UPDRS [19].

FIGURE 11: PDQ-39 percentage difference change in scores
(PQD_preop-PDQ_postop/PDQ_preop) from preoperatively to one-year
follow-up for all cases in the dataset.
On the left side of the plot, negative changes signify worsening PDQ-39 at one year.

PDQ-39 = Parkinson’s Disease Quality of Life 39 Items Scale

Overall, the clinical variables on their own have a certain predictive power [8,20]. Combining with radiomics
features allows the capturing of additional information in the data and improves the accuracy, especially for
the LR models where the AUC increased from 0.77 to 0.92 (Figure 7). In addition, clinicians understand and
reject less frequently machine learning models that have clinical variables combined with radiomics [21],
therefore, this appears to be a promising methodology to use.

Pathophysiological and anatomical correlates
PD patients have been found to have numerous microstructural abnormalities both in white matter and gray
matter of the brain [22]. The key hypothesis focuses on the initial degeneration of white matter which
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precedes and causes gray matter atrophy and functional connectivity loss between key areas of the cortex
and basal ganglia. A recent meta-analysis [23] confirmed tractography-measured abnormalities in the body
of the corpus callosum and the inferior fronto-occipital fasciculus of PD patients. These findings strengthen
the reasons to study white matter in search of potential structural biomarkers. In this study, how does this
selected set of radiomics features (Figure 2) of whole brain white matter relate at the structural level to a
pathophysiological paradigm that predicts better or worse motor response to DBS? Two main classes of
features emerge, i.e., the “first-order” statistics features (mean, skewness, 90th percentile), which
correspond to measurements on the grey levels texture of the white matter as a whole, and the “second-
order” features also called grey-level co-occurrence matrix (GLCM_cluster shade, GLCM_Imc2, GLCM_MCC)
which take in to account the variation of the grey-level variation in the “neighbourhood” of each voxel of
the white matter, with the GLCM ones showing larger effects on the predictive model (Figure 9). The higher
the GLCM |absolute| feature values are the less uniform and more heterogeneous are the corresponding
voxels analysed in the white matter. In our study, all GLMC features between the two groups showed
statistical significance, with the suboptimal responders showing higher |absolute| mean values (Figure
3). The study of Pantic et al. [24] confirmed a similar relationship between electron microscopy of
atrophic/injured brain tissue and GLCM radiomics features. Equally, there is a wealth of studies attempting
to predict disease progression in PD patients with white or grey matter radiomics, which point toward the
microstructural damage of the neural tissue as a pathophysiological substrate of the progressive natural
history of the disease [25,26]. To summarise, PD is characterised by neuronal loss not only in the substantia
nigra but throughout the brain [26]. Although there are several hypotheses with regard to the mechanism of
DBS [13], there is no doubt that its effects are not only local around the electrode but also remote,
throughout the basal ganglia circuitry and cortex. This hypothesis requires a functional connectivity
between these areas. Therefore, the loss of white matter connectivity in the brain is reflected not only in
patients’ motor impairment but also in their inability to improve substantially, i.e., the lack of motor
“recovery” after DBS therapy [27,28]. We hypothesise that these radiomics features are a “surrogate marker”
sensitive to the white matter microstructural damage that reflects the lack of “brain reserve” of the patients
who fail to improve after DBS.

Accuracy versus interpretability trade-off
Machine learning models after appropriate validation offer valuable contributions to clinicians’
armamentarium that could provide additional guidance for evidence-based and informed treatment
decisions. However, the responsibility for the decisions lies with the clinicians using them. The
repercussions of such a clinical decision aided by a machine learning model can be from life-saving to
devastating. Let us imagine a prospective PD patient in our case who may be put off by the lack of
“predicted” good response or in the opposite scenario may undergo the treatment for no real benefit. This is
why from a regulatory point of view, the European Union General Data Protection Regulation directive calls
for ways to explain the rules of how a machine learning algorithm reaches a decision in human terms.
Equally, medical bodies and clinical teams relate the trust in a prediction tool to the amount of
interpretability they can derive from a machine learning model. In this study, two models were demonstrated
from the best-performing RF to the good but not optimally performing LR. The latter though has the
advantage of explainability based on the feature coefficients of the model (Figure 10). Models such as
logistic or linear regression, SVM with linear kernels, and decision trees are called white-box models as they
allow for an easier explanation as to how a prediction is reached. On the other hand, models such as artificial
neural networks and their variants, RF, and gradient-boosted trees are referred to as black-box models due
to their complexity with regard to their human interpretability. There are increasing efforts in the scientific
community to provide new tools that may shed light on the so-called black box models such as the use of the
SHAP toolbox [29] to present more human-interpretable results. Ultimately, the decision of the accuracy
versus interpretability trade-off and choice of the model to use has to increase by mutual trust-building
between the clinical teams, the patients, and the engineers designing these tools.

Study limitations
Although this study is the largest so far (Table 4), it can still be considered to have a low number of cases
concerning the number of features produced by a typical radiomics analysis. Another point to mention is
that radiomics analysis in general could be influenced by the scanner brand, software, and the parameters of
the MRI sequences used. Although this study attempts to demonstrate an easy-to-replicate imaging pipeline
for the clinical/data science community, it will likely be necessary to train the models locally in each centre
with their own radiomics dataset. Thus, it may not be easily generalizable out of the box. In any case, from
this proof of concept to utilise a machine learning model in clinical practice, it should be externally
validated with larger datasets. An additional limitation of this study involves the clinical scale we selected as
the ground truth. On-state UPDRSIII score cannot discriminate between medication and stimulation-
induced beneficial effects on motor symptoms as is the case for UPDRS assessment at an off state. On the
other hand, movement disorder experts tend to measure DBS efficacy by the degree of motor complications
elimination, a clinical outcome assessed by part IV of the UPDRS scale. However, if we take into
consideration that our patients who were branded as good responders also achieved an average of 44.6%
UPDRSIII reduction and an average of 48.1% LEDD drop, it can be assumed that this reflects a truly improved
cohort of patients.
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Conclusions
Previous studies using radiomics and machine learning methods in PD patients claim to achieve a “view in
the future” by predicting, years in advance, the rate and the degree of disease deterioration for each patient.
This proof-of-concept research is the largest analysis so far of combined radiomics and clinical features
which attempts to predict patient outcomes after DBS for PD. The methodology used is easy to implement
using open-source software. The results demonstrated good results for both easy-to-interpret LR models
(accuracy of 88%) and “black-box” state-of-the-art RF models (accuracy of 95%). However, it is important to
remember that the study is based on a small dataset which has not been validated with a large independent
test dataset.

In the future, methodologies, like the one presented here, will lead to the development of machine learning
algorithms that will serve as valuable tools helping clinicians make the right diagnosis and predict with
better accuracy individualised disease progression and treatment responses. This would be true personalised
medicine. The key in this chain of machine learning predictive models lies in their rigorous validation with
large datasets so the element of trust can be built among the clinical teams and patients.

Additional Information
Author Contributions
All authors have reviewed the final version to be published and agreed to be accountable for all aspects of the
work.

Concept and design:  Nikolaos Haliasos, Dimitrios Giakoumettis, Prathishta Gnanaratnasingham, Anjum
Misbahuddin, Antonios Vakis

Acquisition, analysis, or interpretation of data:  Nikolaos Haliasos, Dimitrios Giakoumettis, Prathishta
Gnanaratnasingham, Hu Liang Low, Panagiotis Zikos, Vangelis Sakkalis, Spanaki Cleo, Sotirios Bisdas

Drafting of the manuscript:  Nikolaos Haliasos, Dimitrios Giakoumettis, Prathishta Gnanaratnasingham,
Panagiotis Zikos, Vangelis Sakkalis, Spanaki Cleo, Antonios Vakis

Critical review of the manuscript for important intellectual content:  Nikolaos Haliasos, Dimitrios
Giakoumettis, Prathishta Gnanaratnasingham, Hu Liang Low, Anjum Misbahuddin, Panagiotis Zikos,
Vangelis Sakkalis, Spanaki Cleo, Antonios Vakis, Sotirios Bisdas

Supervision:  Hu Liang Low, Anjum Misbahuddin, Vangelis Sakkalis, Spanaki Cleo, Antonios Vakis, Sotirios
Bisdas

Disclosures
Human subjects: Consent was obtained or waived by all participants in this study. London Ethics
Committee Board issued approval 273497. Animal subjects: All authors have confirmed that this study did
not involve animal subjects or tissue. Conflicts of interest: In compliance with the ICMJE uniform
disclosure form, all authors declare the following: Payment/services info: All authors have declared that no
financial support was received from any organization for the submitted work. Financial relationships: All
authors have declared that they have no financial relationships at present or within the previous three years
with any organizations that might have an interest in the submitted work. Other relationships: All authors
have declared that there are no other relationships or activities that could appear to have influenced the
submitted work.

References
1. Limousin P, Foltynie T: Long-term outcomes of deep brain stimulation in Parkinson disease . Nat Rev

Neurol. 2019, 15:234-42. 10.1038/s41582-019-0145-9
2. Williams A, Gill S, Varma T, et al.: Deep brain stimulation plus best medical therapy versus best medical

therapy alone for advanced Parkinson's disease (PD SURG trial): a randomised, open-label trial. Lancet
Neurol. 2010, 9:581-91. 10.1016/S1474-4422(10)70093-4

3. Schuepbach WM, Tonder L, Schnitzler A, et al.: Quality of life predicts outcome of deep brain stimulation in
early Parkinson disease. Neurology. 2019, 92:e1109-20. 10.1212/WNL.0000000000007037

4. Poston KL, Ua Cruadhlaoich MA, Santoso LF, et al.: Substantia nigra volume dissociates bradykinesia and
rigidity from tremor in Parkinson's disease: a 7 Tesla imaging study. J Parkinsons Dis. 2020, 10:591-604.
10.3233/JPD-191890

5. Shao Y, Chen Z, Ming S, et al.: Predicting the development of normal-appearing white matter with
radiomics in the aging brain: a longitudinal clinical study. Front Aging Neurosci. 2018, 10:393.
10.3389/fnagi.2018.00393

6. Rektor I, Svátková A, Vojtíšek L, Zikmundová I, Vaníček J, Király A, Szabó N: White matter alterations in
Parkinson's disease with normal cognition precede grey matter atrophy. PLoS One. 2018, 13:e0187939.
10.1371/journal.pone.0187939

2024 Haliasos et al. Cureus 16(5): e59915. DOI 10.7759/cureus.59915 17 of 18

https://dx.doi.org/10.1038/s41582-019-0145-9
https://dx.doi.org/10.1038/s41582-019-0145-9
https://dx.doi.org/10.1016/S1474-4422(10)70093-4
https://dx.doi.org/10.1016/S1474-4422(10)70093-4
https://dx.doi.org/10.1212/WNL.0000000000007037
https://dx.doi.org/10.1212/WNL.0000000000007037
https://dx.doi.org/10.3233/JPD-191890
https://dx.doi.org/10.3233/JPD-191890
https://dx.doi.org/10.3389/fnagi.2018.00393
https://dx.doi.org/10.3389/fnagi.2018.00393
https://dx.doi.org/10.1371/journal.pone.0187939
https://dx.doi.org/10.1371/journal.pone.0187939


7. Habets JG, Janssen ML, Duits AA, et al.: Machine learning prediction of motor response after deep brain
stimulation in Parkinson's disease-proof of principle in a retrospective cohort. PeerJ. 2020, 8:e10317.
10.7717/peerj.10317

8. Habets JG, Herff C, Fasano AA, et al.: Multicenter validation of individual preoperative motor outcome
prediction for deep brain stimulation in Parkinson's disease. Stereotact Funct Neurosurg. 2022, 100:121-9.
10.1159/000519960

9. Radovic M, Ghalwash M, Filipovic N, Obradovic Z: Minimum redundancy maximum relevance feature
selection approach for temporal gene expression data. BMC Bioinformatics. 2017, 18:9. 10.1186/s12859-016-
1423-9

10. Banegas-Luna AJ, Peña-García J, Iftene A, et al.: Towards the interpretability of machine learning
predictions for medical applications targeting personalised therapies: a cancer case survey. Int J Mol Sci.
2021, 22:4394. 10.3390/ijms22094394

11. Wolke R, Becktepe JS, Paschen S, et al.: The role of levodopa challenge in predicting the outcome of
subthalamic deep brain stimulation. Mov Disord Clin Pract. 2023, 10:1181-91. 10.1002/mdc3.13825

12. Vesper J, Haak S, Ostertag C, Nikkhah G: Subthalamic nucleus deep brain stimulation in elderly patients--
analysis of outcome and complications. BMC Neurol. 2007, 7:7. 10.1186/1471-2377-7-7

13. Shah H, Usman O, Ur Rehman H, et al.: Deep brain stimulation in the treatment of Parkinson's disease .
Cureus. 2022, 14:e28760. 10.7759/cureus.28760

14. Saudargiene A, Radziunas A, Dainauskas JJ, et al.: Radiomic features of amygdala nuclei and hippocampus
subfields help to predict subthalamic deep brain stimulation motor outcomes for Parkinson's disease
patients. Front Neurosci. 2022, 16:1028996. 10.3389/fnins.2022.1028996

15. Liu Y, Xiao B, Zhang C, et al.: Predicting motor outcome of subthalamic nucleus deep brain stimulation for
Parkinson's disease using quantitative susceptibility mapping and radiomics: a pilot study. Front Neurosci.
2021, 15:731109. 10.3389/fnins.2021.731109

16. Frizon LA, Hogue O, Achey R, Floden DP, Nagel S, Machado AG, Lobel DA: Quality of life improvement
following deep brain stimulation for Parkinson disease: development of a prognostic model. Neurosurgery.
2019, 85:343-9. 10.1093/neuros/nyy287

17. Xu C, Zhuang P, Hallett M, Zhang Y, Li J, Li Y: Parkinson's disease motor subtypes show different responses
to long-term subthalamic nucleus stimulation. Front Hum Neurosci. 2018, 12:365.
10.3389/fnhum.2018.00365

18. Sobstyl M, Ząbek M, Górecki W, Mossakowski Z: Quality of life in advanced Parkinson's disease after
bilateral subthalamic stimulation: 2 years follow-up study. Clin Neurol Neurosurg. 2014, 124:161-5.
10.1016/j.clineuro.2014.06.019

19. Floden D, Cooper SE, Griffith SD, Machado AG: Predicting quality of life outcomes after subthalamic
nucleus deep brain stimulation. Neurology. 2014, 83:1627-33. 10.1212/WNL.0000000000000943

20. Su XL, Luo XG, Lv H, Wang J, Ren Y, He ZY: Factors predicting the instant effect of motor function after
subthalamic nucleus deep brain stimulation in Parkinson's disease. Transl Neurodegener. 2017, 6:14.
10.1186/s40035-017-0084-6

21. Fournier L, Costaridou L, Bidaut L, et al.: Incorporating radiomics into clinical trials: expert consensus
endorsed by the European Society of Radiology on considerations for data-driven compared to biologically
driven quantitative biomarkers. Eur Radiol. 2021, 31:6001-12. 10.1007/s00330-020-07598-8

22. Sarasso E, Agosta F, Piramide N, Filippi M: Progression of grey and white matter brain damage in
Parkinson's disease: a critical review of structural MRI literature. J Neurol. 2021, 268:3144-79.
10.1007/s00415-020-09863-8

23. Wei X, Luo C, Li Q, et al.: White matter abnormalities in patients with Parkinson's disease: a meta-analysis
of diffusion tensor imaging using tract-based spatial statistics. Front Aging Neurosci. 2020, 12:610962.
10.3389/fnagi.2020.610962

24. Pantic I, Jeremic R, Dacic S, et al.: Gray-level co-occurrence matrix analysis of granule neurons of the
hippocampal dentate gyrus following cortical injury. Microsc Microanal. 2020, 26:166-72.
10.1017/S143192762000001X

25. Shu ZY, Cui SJ, Wu X, Xu Y, Huang P, Pang PP, Zhang M: Predicting the progression of Parkinson's disease
using conventional MRI and machine learning: an application of radiomic biomarkers in whole-brain white
matter. Magn Reson Med. 2021, 85:1611-24. 10.1002/mrm.28522

26. Betrouni N, Moreau C, Rolland AS, et al.: Texture-based markers from structural imaging correlate with
motor handicap in Parkinson's disease. Sci Rep. 2021, 11:2724. 10.1038/s41598-021-81209-4

27. Horn A, Reich M, Vorwerk J, et al.: Connectivity predicts deep brain stimulation outcome in Parkinson
disease. Ann Neurol. 2017, 82:67-78. 10.1002/ana.24974

28. Loh A, Boutet A, Germann J, et al.: A functional connectome of Parkinson's disease patients prior to deep
brain stimulation: a tool for disease-specific connectivity analyses. Front Neurosci. 2022, 16:804125.
10.3389/fnins.2022.804125

29. Belle V, Papantonis I: Principles and practice of explainable machine learning . Front Big Data. 2021,
4:688969. 10.3389/fdata.2021.688969

2024 Haliasos et al. Cureus 16(5): e59915. DOI 10.7759/cureus.59915 18 of 18

https://dx.doi.org/10.7717/peerj.10317
https://dx.doi.org/10.7717/peerj.10317
https://dx.doi.org/10.1159/000519960
https://dx.doi.org/10.1159/000519960
https://dx.doi.org/10.1186/s12859-016-1423-9
https://dx.doi.org/10.1186/s12859-016-1423-9
https://dx.doi.org/10.3390/ijms22094394
https://dx.doi.org/10.3390/ijms22094394
https://dx.doi.org/10.1002/mdc3.13825
https://dx.doi.org/10.1002/mdc3.13825
https://dx.doi.org/10.1186/1471-2377-7-7
https://dx.doi.org/10.1186/1471-2377-7-7
https://dx.doi.org/10.7759/cureus.28760
https://dx.doi.org/10.7759/cureus.28760
https://dx.doi.org/10.3389/fnins.2022.1028996
https://dx.doi.org/10.3389/fnins.2022.1028996
https://dx.doi.org/10.3389/fnins.2021.731109
https://dx.doi.org/10.3389/fnins.2021.731109
https://dx.doi.org/10.1093/neuros/nyy287
https://dx.doi.org/10.1093/neuros/nyy287
https://dx.doi.org/10.3389/fnhum.2018.00365
https://dx.doi.org/10.3389/fnhum.2018.00365
https://dx.doi.org/10.1016/j.clineuro.2014.06.019
https://dx.doi.org/10.1016/j.clineuro.2014.06.019
https://dx.doi.org/10.1212/WNL.0000000000000943
https://dx.doi.org/10.1212/WNL.0000000000000943
https://dx.doi.org/10.1186/s40035-017-0084-6
https://dx.doi.org/10.1186/s40035-017-0084-6
https://dx.doi.org/10.1007/s00330-020-07598-8
https://dx.doi.org/10.1007/s00330-020-07598-8
https://dx.doi.org/10.1007/s00415-020-09863-8
https://dx.doi.org/10.1007/s00415-020-09863-8
https://dx.doi.org/10.3389/fnagi.2020.610962
https://dx.doi.org/10.3389/fnagi.2020.610962
https://dx.doi.org/10.1017/S143192762000001X
https://dx.doi.org/10.1017/S143192762000001X
https://dx.doi.org/10.1002/mrm.28522
https://dx.doi.org/10.1002/mrm.28522
https://dx.doi.org/10.1038/s41598-021-81209-4
https://dx.doi.org/10.1038/s41598-021-81209-4
https://dx.doi.org/10.1002/ana.24974
https://dx.doi.org/10.1002/ana.24974
https://dx.doi.org/10.3389/fnins.2022.804125
https://dx.doi.org/10.3389/fnins.2022.804125
https://dx.doi.org/10.3389/fdata.2021.688969
https://dx.doi.org/10.3389/fdata.2021.688969

	Personalizing Deep Brain Stimulation Therapy for Parkinson’s Disease With Whole-Brain MRI Radiomics and Machine Learning
	Abstract
	Background
	Methodology
	Results
	Conclusions

	Introduction
	Materials And Methods
	FIGURE 1: Flowchart of the study population and selection process for good versus suboptimal responders.
	Ethical approval
	Patient selection
	TABLE 1: Population characteristics at baseline in this study grouped by good versus suboptimal responders.

	Surgery
	MRI acquisition
	Image processing
	Feature selection
	Machine learning models
	Statistical analysis

	Results
	TABLE 2: Baseline versus one-year follow-up of the whole group and good versus suboptimal responders subgroups.
	Feature selection
	FIGURE 2: Correlation heatmap between the radiomics selected features with the mRMR methodology.
	FIGURE 3: Distribution of good versus suboptimal response.

	Evaluation and selection of machine learning models
	FIGURE 4: Densities of the AUC for the models analysed after 1,000 bootstrap repetitions.
	TABLE 3: Machine learning models predicting a good versus suboptimal motor UPDRSIII outcome after one-year follow-up.
	FIGURE 5: Comparative graphs of ROC of the radiomics models between LR and RF classifiers after the bootstrap procedure.

	Machine learning models of clinical variables
	FIGURE 6: Comparative graphs of ROC of (A) clinical-only in blue versus the radiomics model in green for logistic regression and (B) between clinical-only in blue versus the radiomics model in green for random forest classifier after the bootstrap procedure.

	Performance of the models on the entire dataset
	FIGURE 7: ROC of the joint models of logistic regression versus random forests.
	FIGURE 8: Confusion matrices of (A) logistic regression and (B) random forest classifier.

	Interpretability of the models and feature importance
	FIGURE 9: Feature relative importance by normalised odds ratio.
	FIGURE 10: LIME visualisation of an individual patient case where the model attempts to explain how the various features contributed to the prediction of suboptimal response.


	Discussion
	The ground truth debate and literature review
	TABLE 4: Previous studies in the literature in comparison with the current study.
	FIGURE 11: PDQ-39 percentage difference change in scores (PQD_preop-PDQ_postop/PDQ_preop) from preoperatively to one-year follow-up for all cases in the dataset.

	Pathophysiological and anatomical correlates
	Accuracy versus interpretability trade-off
	Study limitations

	Conclusions
	Additional Information
	Author Contributions
	Disclosures

	References


