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Abstract
Background
Tuberculosis (TB) is a serious infectious disease that primarily affects the lungs. Despite advancements in
the medical industry, TB remains a significant global health challenge. Early and accurate detection of TB is
crucial for effective treatment and reducing transmission. This article presents a deep learning approach
using convolutional neural networks (CNNs) to improve TB detection in chest X-ray images.

Methods
For the dataset, we collected 7000 images from Kaggle.com, of which 3500 exhibit tuberculosis evidence and
the remaining 3500 are normal. Preprocessing techniques such as wavelet transformation, contrast-limited
adaptive histogram equalisation (CLAHE), and gamma correction were applied to enhance the image quality.
Random flipping, random rotation, random resizing, and random rescaling were among the techniques
employed to increase dataset variability and model robustness. Convolutional, max-pooling, flatten, and
dense layers comprised the CNN model architecture. For binary classification, sigmoid activation was
utilised in the output layer and rectified linear unit (ReLU) activation in the input and hidden layers.

Results
The CNN model achieved an accuracy of ~96.57% in detecting TB from chest X-ray images, demonstrating
the effectiveness of deep learning, particularly CNNs, in this application. Self-trained CNNs have optimised
the results as compared to the transfer learning of various pre-trained models.

Conclusion
This study shows how well deep learning-in particular, CNNs-performs in the identification of tuberculosis.
Subsequent efforts have to give precedence to optimising the model by obtaining more extensive datasets
from the local hospitals and localities, which are vulnerable to TB, and stress the possibility of augmenting
diagnostic knowledge in medical imaging via machine learning methodologies.

Categories: Medical Education, Pulmonology, Healthcare Technology
Keywords: chest x-ray, image processing, diagnostic accuracy, medical imaging, deep learning, convolutional neural
network, tuberculosis

Introduction
Despite advancements in the medical industry, tuberculosis (TB) remains a significant global health
challenge, infecting more than ~10.7 million new people and resulting in ~1.3 million deaths, as per the
report of the WHO in 2023 alone. TB also ranks second on the list of infectious killers after the COVID-19
pandemic [1]. Effective TB therapy and disease control depend on early and precise diagnosis, particularly in
impoverished areas where access to cutting-edge medical facilities is limited. The first technique to identify
tuberculosis (TB) was the tuberculin skin test, followed by more recent diagnostic techniques such as sputum
microscopy, chest X-rays, and molecular testing [2]. These traditional techniques are not up to the standard
that is needed for clinical trials and come with a bunch of drawbacks like the requirement of skilled staff.

To reduce the cost of the TB screening process, mainly chest X-rays (CXRs) are used for diagnosis but they
contain a major problem of internal sensitivity which comes due to malfunctioning of the X-ray machine. In
order to solve these problems, computer-aided detection (CAD) techniques came into the picture, which laid
emphasis on the integration of convolution-based deep learning systems [3]. Radiologists and medical
physicians use this technique hassle-free without the use of any sophisticated or complicated equipment.

Deep learning models are highly advanced networked systems and are a subset of artificial intelligence. They
can create various classification systems that can easily identify various recurring patterns and features from
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large amounts of data provided by various organizations. Since they studied extensive information on chest
X-ray images, they used some algorithms to help identify various abnormalities that could accurately
indicate TB symptoms.

Convolutional neural networks (CNN) have a great impact on medical image processing [4]. They are very
effective in image classification and are an important part of deep learning. CNN examines each pixel in the
chest X-ray by first dividing it into multiple matrices. They then used methods such as random selection and
grid search to find specific patterns, such as nodules. CNNs can be trained to extend their learning models to
accurately classify tuberculosis cases, even when symptoms are mild or unusual. This technical advancement
makes TB screening processes more accessible and ubiquitous in remote areas. Also, it is duly easier as
compared to the previous hectic processes without machines, especially where qualified radiologists are
limited.

Materials And Methods
Dataset description
We collected a variety of chest X-rays from reputable sources. Our main source of data was a well-known
website named Kaggle.com [5]. Focusing mainly on four datasets: the Montgomery and Shenzhen databases,
which come under the Medicine Library of the US; the Belarus dataset, which was gathered in the past for
research on drug addiction by the Belarus Ministry of Health; the National Institute of Allergy and Infectious
Diseases (NIAID) TB dataset; and the Radiological Society of North America (RSNA) dataset, which was used
previously for pneumonia identification, containing vast amounts of normal and TB-labelled images. The
medical imaging community makes extensive use of these databases for research. We sent more than 35,000
images for screening, making our dataset very large. This combined dataset's diversity made it ideal for us to
train and validate our model for tuberculosis diagnosis.

Figure 1 shows that the dataset was divided into an 80% training set, and the remaining 20% was equally
divided into a 10%-10% validation and testing set, following normative machine learning practices. An
image generator was used to shuffle the dataset and generate the training, validation, and testing datasets.

FIGURE 1: Visual representation of dataset categorised into training,
testing and validation

Data pre-processing
We used four phases for the data preprocessing phase: identification, screening, eligibility, and the final
dataset. Chest X-ray pictures were gathered from four important sources for the identification step. We sent
all of the records for the second screening stage, which verified the accuracy of the records from the first
stage, after the data-gathering process. Next comes the eligibility phase, when we remove any noisy or
grainy images that can affect the accuracy of our results. The primary goal was to achieve the qualifying
requirements in order to improve the model's TB diagnosis accuracy. Using preprocessing techniques
including wavelet transformation, gamma correction, adaptive contrast with limited equalisation of the
histogram (CLAHE), and equalisation of the histogram on the stage 3 images that were received was the final
step. Each of these methods was essential in getting the dataset ready for further examination and model
training. Following every step of the preprocessing procedure, Figure 2 shows how we arrived at 7,000 final
pictures, of which 3500 were classified as normal and 3500 as tuberculosis [6].
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FIGURE 2: Visual representation of pre-processing of the dataset
NLM, National Library of Medicine;  CXR, chest X-ray;  NIAID, National Institute of Allergy and Infectious
Diseases;  TB, tuberculosis;  RSNA, Radiological Society of North America;  CLAHE, contrast limited adaptive
histogram equalisation;  HE, histogram equalisation.

CLAHE, Gamma Correction, HE, and Wavelet techniques help to transform images through noise compression,
pixel intensity redistribution, and image fusion.

Data augmentation
In order to save our model from overfitting and to implement generalisation, we used some augmentation
techniques on the images, such as shifting, scaling, random rotation, flipping, and brightness controlling. By
doing this, our training data set becomes more diverse, which enhances the model's capacity to generalise to
previously undiscovered data.

Figure 3 shows a comparison of the original image and further augmentation techniques applied to it.

FIGURE 3: Sample of data augmentation
A-E highlights a variety of augmentation techniques applied to the images. A depicts the original image. B shows
the changes in rotation and scale. C shows the perspective change, while D highlights the brightness changes.
Putting all this together, E displays the final image after applying A-D techniques.

Convolutional neural networks (CNNs)
Deep learning has attracted a large chunk of attention lately as a powerful technique for handling difficult
problems. The area of machine learning was born out of the necessity of incorporating the process, known
as learning, into machines. Traditional machine-learning techniques need feature extraction, which is a
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challenging process that often requires domain expertise. CNNs and other deep learning algorithms
automatically detect significant features in raw input data, doing away with the need for feature selection.
Processing layers in CNNs recognize different data features by applying different abstraction levels. CNNs
are highly helpful in many applications, such as speech recognition, photo identification, and natural
language comprehension, due to their ability to develop unique qualities. Weight sharing allows CNNs to
train fewer parameters, which enhances generalisation and decreases the likelihood of overfitting. When
compared to generic artificial neural network (ANN) models, this integration makes the design of huge
networks easier.

Figure 4 represents the generalised idea of how CNN works in two stages: classification and feature
extraction using multiple layers.

FIGURE 4: Representation of generalised CNN
CNN, convolutional neural network.

Components of CNN
Convolutional Layer

The convolution layer uses features extracted from the image to generate the predicted class label, the
output, when it receives an image as input. A local relationship known as a receptive field connects every
neuron in the next layer to every other neuron in the layer before it. We use these receptive fields to extract
local details from the input image. Through the plane of neurons in the next layer, the weight vector
associated with a neuron's receptive field does not change. In the convolution layer, this weight vector-also
known as a filter or kernel-works on the input vector to produce a feature map. This procedure produces
numerous filters and feature maps, generating several features from the original image.

Pooling/Squeezing Layer

After the convolution layer, we use the pooling, or squeezing, layer, primarily to reduce the less important
features from various regions. This diminishes the overall number of trainable parameters while adding
translation invariance. During the pooling process, we choose a specific shape for the sliding window and
then process each feature map from the convolutional layer using a pooling function to produce an output
vector. Our model uses max-pooling, which selects the maximum value from the window, due to its
effectiveness in squeezing the feature map size.

Completely Networked Layer

The fully connected layer, which gets the output from the phase before it, which consists of pooling and
convolution layers, determines the final result by computing the dot product of the input vector and the
weight vector. Dense and flatten are the two main layers that are typically present. Multi-dimensional
feature maps are produced by the convolutional and pooling layers, and the Flatten layer converts these into
one-dimensional vectors [7]. This flattened vector is then given to the Dense layers for classification or
regression.

Activation Function
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We use the activation function to add non-linearity to the network and improve its accuracy. We have used
the Rectified Linear Unit (ReLU) in the convolutional and hidden layers, which is easier to calculate, requires
less training time than sigmoid activation functions, and has demonstrated superior performance in
machine learning algorithms. As our dataset comprises binary classes, we have employed the sigmoid
function to ascertain whether the output is normal or TB-positive.

Optimizers

Deep learning model training requires optimizers since they alter model inputs to reduce the loss
determined by different techniques. Through weight changes based on the gradients of the loss function
with respect to the weights, they ascertain the learning process of the model. In this study, we utilized the
Adam optimizer, known for its modifiable learning rate methodology. Adam may adaptably alter the learning
rates during training as a result of this feature, which makes it effective and helpful for a range of deep
learning applications.

Loss Function

In our study, we used the binary cross-entropy loss function. Binary cross-entropy is often used for binary
classification tasks, such as the one in our study where we had to distinguish between TB-positive and TB-
negative cases. It computes the difference between two probability distributions for binary classification,
one reflecting the actual labels and the other the expected probabilities. The goal is to minimise this
discrepancy because it shows a better match between the predicted and real labels.

Model architecture diagram
Figure 5 displays the CNN architecture used for our model in this study.

FIGURE 5: Visual representation of CNN architecture showcasing the
different layers of the used model
The model comprises of mainly four types of layers: Conv2D represents the convolutional layer, MaxPoolling2D
represents the pooling layer, Flatten represents the dimensionality reduction layer, and Dense represents the
output layer.

CNN, convolutional neural network.
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CNNs have drawn interest because of their capacity to classify data depending on context. The primary
components of the traditional CNN model are the activation function, pooling layer, convolution layer,
optimizers, loss functions, and fully linked layer.

Results
Model performance
After training our model, we verified its results using our 700-image test set. We determined the model's
performance through various metrics: F1-score, receiver operating characteristics (ROC) curve, accuracy,
precision, recall, and recall. These results demonstrate the accuracy with which the CNN model identified
tuberculosis in chest X-ray images.

Confusion Matrix

It shows how well the model predicts in comparison to the actual labels on the chest X-rays. Figure 6 shows
the confusion matrix for the test dataset. 

FIGURE 6: Confusion matrix illustrating the suggested model's
performance over test dataset of 700 images
The overall accuracy of the model comes out to be ~(96.57) %

Score for Accuracy

We define accuracy as how many correct results the model predicts in comparison to all the actual inputs. We
achieved an impressive ~(96.57) % accuracy rate on our testing dataset. We tracked the CNN model's training
development throughout 50 epochs. The model was successfully learning the properties of the data, as
evidenced by the steady decrease in its loss.

 Accuracy = (TP + TN) / (FP + TN + TP + FN)

 TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative

Figure 7 below depicts the validation accuracy and validation loss against epochs.
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FIGURE 7: Graphical depiction of the model's accuracy and loss across
the number of epochs
A-B highlights the accuracy and loss over the increasing epochs. A shows the training and validation accuracy
over 50 epochs, while B shows the training and validation loss.

Score for Precision

Precision can be defined as how accurately our model predicts results in comparison to the actual true
results. We finished after reaching a 97% average precision score.

 Precision = TP / (FP + TP)

Score for Recall (Sensitivity)

It is the comparison between all observations made in the actual class and all positively predicted labels. We
achieved a 96% sensitivity score.

 Recall = TP / (TP + FN) 

Precision-Recall Curve

High precision and high recall are shown by a high area under the curve, which depicts the model's excellent
performance. Figure 8 demonstrates the precision-recall curve.
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FIGURE 8: The link between recall and precision throughout the number
of epochs is represented by a curve.

ROC Curve

The ROC curve, a graphical representation, illustrates how well a binary classifier system can identify issues
as its discrimination threshold is adjusted. Figure 9 below represents the ROC curve.
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FIGURE 9: ROC curve illustrates the relationship between True Positive
derivative and False Positive derivative over the number of epochs
ROC, Receiver Operating Characteristic

F1 Score

It is the weighted average between precision and recall. After getting the results, we attained an F1 score of
~96%.

 F1 score = 2 * (Precision * Recall) / (Precision + Recall)
 

Discussion
The results of the study show how deep learning can be significantly beneficial for tuberculosis detection.
CXR imaging (images of chest x-rays) turns out to be an affordable and practical method for medical
practitioners without much human burden for diagnosing tuberculosis (TB). Using a cleaned dataset of 7,000
chest X-ray images, containing two labels: TB-positive and normal individuals, we demonstrated a model
that showed excellent results without using pre-trained models, which require a lot of processing power and
computation.

The scores for both the ROC AUC and the precision-recall AUC were nearly ~99%. This elaborates on the fact
that the model properly identified a significant portion of actual TB-positive cases. The model's ability to
correctly identify normal situations and avoid making inaccurate predictions is proven by the peak
validation accuracy, which reached approximately ~100% in several epochs. These results tend to prove that
independently trained models without pre-trained weights can also generate significant accuracy for the
diagnosis of tuberculosis (TB).

In this work, we investigated the ability of a separate-training Convolutional Neural Network (CNN)
architecture with less convolution and max-pooling layers for tuberculosis symptoms recognition in X-ray
images. Our key premise is that a minimum collection of convolutional or feature extraction layers may
efficiently handle basic picture classification tasks, like developing a tuberculosis detection system.
Interestingly, a large percentage of the research that has already been written in this field tends to focus on
deeper convolutional neural networks, especially pre-trained models that demand a lot of processing power
[8].

Comparison with current techniques
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Our CNN model performs better than current techniques for diagnosing tuberculosis. Previous techniques
have used pre-trained models using transfer learning which demands high computation resources. Our
model demonstrated an improvement of accuracy with little computational power over various methods
used in the past, demonstrating the promise of deep learning approaches for tuberculosis detection.

When we compared our model's performance in this study to that of various other pre-trained models,
accuracy was found to be the best. Previous literature has primarily used the Montgomery and Shenzhen
datasets as their primary source of data due to their high-quality images, which require high computation
power. The average AUC of our model was found to be ~99%, which shows the capability of the model in
identifying TB-positive cases from CXRs.

Comparison Table

Table 1 shows the comparison based on several parameters between the pre-trained models to our
independently trained model.

Author (year) Methods Dataset (image size)
Total number of images used
(TB = Normal)

Accuracy
(%)

AUC

Chia-Jung Liu et al.
(2023). [9]  

DenseNet MIMIC   +   CheXpert 1500 (780 + 720) 66.5 81.3

Ahmed et al. (2023).
[10]  

Topo-CXR Shenzhen CXR 662 (326 + 336) 89.5 93.6

Ahsan et al. (2019). [11]
 

VGG16 Montgomery   +   Shenzhen 800 (394 + 406) 81.25 NA

Devasia et al. (2022).
[12]  

ResNet50 Shenzhen + Montgomery County 3040 76.8 NA

Rajaraman et al. (2021).
[13]  

ResNet-BS Montgomery   +   Shenzhen 800 (394 + 406) 92.30 96

Pattanasuwan et al.
(2021). [14]  

DenseNet
Montgomery, Shenzhen, and Bureau
of tuberculosis

NA 91 95

Nijiati et al. (2021). [15]  TB-UNet Local CXR data 2903 + 7994 85 NA

Present Work
Self-Trained
CNN

Tuberculosis (TB) Chest X-ray
Cleaned Database

7000 (3500 + 3500) 96.57 0.99

TABLE 1: Comparing the suggested approach to earlier literature techniques
AUC, area under curve; CNN, convolutional neural network.

Integration with clinical practice
There could be a big influence on clinical practice if deep learning models, like CNNs, are used in TB
diagnosis, especially in economically backward areas. These models can help radiologists diagnose
tuberculosis (TB) more quickly and accurately by helping them analyse chest X-ray pictures, which could
help in the early prevention of this infectious disease. Furthermore, CNNs are useful tools for screening
programmes and epidemiological investigations because of their speedy analysis of vast datasets.

Limitations
The study's conclusions would undoubtedly be strengthened by increasing the dataset's sample size.
However, it's important to remember that training a huge dataset necessitates a lot of computational power
and resources, which smaller healthcare facilities might not have on hand. This restriction highlights the
need for cooperation and shared resource access in order to overcome such obstacles in subsequent research
projects. It is true that despite this level of accuracy, many medical facilities still favour manual TB testing
since it raises concerns about a patient's life or death. Still, these techniques save a significant amount of
time when compared to manual testing. Research on these subjects is always expanding, and eventually, it
may be incorporated into actual situations.

Future scope
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In order to enhance the model's performance, we intend to incorporate a variety of datasets, mostly from
nearby hospitals that are at risk for tuberculosis. By employing machine learning on CXRs, we intend to raise
knowledge of tuberculosis diagnosis among those who are not medical professionals. By adding more
workstations and strong graphics processing units (GPUs), we want to explore the usage of various pre-
trained CNN models for feature extraction as well as the mixing of multiple network layers.

Conclusions
Our study features a CNN independently trained to detect TB from chest X-rays (CXRs). To make sure the
necessary portion of the original image was present, we submitted both the original and segmented photos.
Next, we deployed the CNN model to gain various insights about various features from every image. Training
the model with no pre-trained weights required fewer processing resources and yielded a respectable
accuracy of ~96.57%. Visualisation metrics, including the ROC curve, precision recall curve, validation
accuracy, and loss curve, were used to analyse how well the model performed. The advanced performance of
this study can be a quick diagnostic tool, greatly lowering the yearly mortality toll from incorrect or delayed
diagnosis.
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