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Abstract
Introduction
Oral cancer is a significant global health issue that is mainly caused by factors, such as smoking, alcohol
consumption, poor oral hygiene, age, and the human papillomavirus. Unfortunately, delayed diagnosis
contributes to high rates of illness and mortality. However, saliva shows promise as a potential source for
early detection, prognosis, and treatment. By analyzing the proteins and their interactions in saliva, we can
gain insights that can assist in early detection and prediction. In this study, we aim to identify and predict
the key genes, known as hub genes, in the salivary transcriptomics data of oral cancer patients and healthy
individuals.

Methods
The data used for the analysis were obtained from salivaryproteome.org (https://salivaryproteome.org/) . The
retrieved data consisted of individuals with oral cancer who were assigned unique identification numbers
(IDs) 1025, 1030, 1027, and 1029, while the healthy individuals were assigned IDs 4256, 4257, 4255, and
4258, respectively. Differential gene expression analysis was used to identify genes that showed significant
differences between the two groups. Uniformity and clustering were assessed through heatmaps and
principal component analysis. Protein-protein interactions were investigated using the STRING database
and Cytoscape. In addition, machine learning algorithms were employed to identify key genes involved in
the interatomic interactions by analyzing transcriptomics data generated from the differential gene
expression analysis.

Results
The accuracy and class accuracy of the extra tree classifier showed 98% and 97% in predicting interactomic
hub genes, and HSPB1 was identified as a hub gene using Cytohubba from Cytoscape.

Conclusion
The predictive extra tree classifier, with its high accuracy in analysing interactomic hub genes in oral cancer,
can potentially improve diagnosis and treatment strategies.
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Introduction
Oral cancer, a type of head and neck cancer, is a perilous and potentially life-threatening condition affecting
the oral cavity, including the lips, tongue, gingiva, cheeks, and roof of the mouth [1,2]. It can be caused by
smoking, alcohol consumption, a family history of cancer, and exposure to chemicals. Symptoms include
persistent mouth sores, swelling, difficulty chewing, changes in voice or speech, and unexplained weight
loss. Treatment options include surgical therapy, chemotherapy, radiation therapy, targeted therapy, or a
combination of the above. Prevention involves avoiding risk factors, regular dental check-ups, and the HPV
vaccine [3]. Advancements in medical technology and awareness have improved diagnosis and treatment
outcomes. In addition, craniofacial tumors are known to present diverse clinical behaviors and
histopathological presentations. A previous clinicopathological study of craniofacial tumor management
was conducted on 319 patients and identified that the unique nature of cystic and neoplastic pathosis in the
craniofacial region was due to aesthetic and functional derangements, with variations in prevalence due to
occupational, sociocultural, and climatic factors [4].

The oral cancer interactome hub refers to a network of interactions between proteins involved in the
development and progression of oral cancer. An interactome is a comprehensive map of interactions
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between proteins within a cell or biological system. The oral cancer interactome hub [5-7] is a research
concept that aims to understand molecular pathways and protein-protein interactions in oral cancer. It uses
experimental techniques and computational methods to map interactions, identify biomarkers, and develop
new treatment strategies [8,9]. This knowledge can lead to targeted therapies that improve treatment
outcomes for patients.

A previous study proposes a protein-protein interaction network technique to analyze genes involved in oral
cancer disorders, revealing a network with 208 nodes and 1572 edges. TP53, a key gene [10,11], is identified
as a key player in the oral cancer network, enhancing disease understanding and treatment. A study
analyzing saliva proteomics data for oral cancer identified 74 candidate genes or proteins. The analysis
identified nine hub-bottleneck proteins, including kininogen-1, angiotensinogen, annexin A1, IL-8, IgG
heavy chains, CRP, collagen alpha-1, and fibronectin, as potential biomarkers for diagnosis and treatment.
A study uses high-throughput transcriptomics methods and machine learning to identify disease biomarkers
for MetS. The integrated approach uses WGCNA, LASSO regression, and RF algorithms for feature selection.
A logistic regression model and web nomogram calculator are created for MetS risk assessment, aiming to
develop reliable biomarkers [12]. Machine learning is used to predict and analyze complex interactions
within biological networks, particularly in interactome hub genes. These genes play crucial roles in cellular
processes and are often linked to disease mechanisms. Techniques like clustering, classification, and
network analysis help identify key hub genes, predict gene function, discover disease biomarkers, and
understand genetic perturbations.

Oral cancer results in high mortality rates and limited treatment options. This study aimed to identify
interactomic hub genes associated with oral cancer and propose a predictive model for their identification by
using differential expression analysis to identify genes significantly dysregulated in oral cancer and extract
protein-protein interaction data from publicly available databases. Using functional enrichment analysis, the
study will validate the identified hub genes' significance and functional relevance. A predictive model will be
developed to classify oral cancer patients into subtypes or predict disease outcomes. Hence, our study is
based on machine learning prediction of interactome hub genes in oral cancer.

Materials And Methods
The data used for the analysis were obtained from salivaryproteome.org. The retrieved data consisted
of individuals with oral cancer who were assigned unique identification numbers (IDs) 1025, 1030, 1027, and
1029, while the healthy individuals were assigned IDs 4256, 4257, 4255, and 4258, respectively. 

This study acknowledges the importance of integrated bioinformatics analysis in identifying hub genes using
network analysis. This approach allows us to leverage the power of AI algorithms to predict hub genes,
leading to the discovery of potential biomarkers and drug targets in oral cancer. The study aims to
contribute to the field by shedding light on the intricacies of oral cancer at a molecular level. By utilizing
network analysis and applying advanced AI algorithms, the key genes that play a crucial role in the
development and progression of oral cancer may be uncovered. Thus, the findings may significantly enhance
our understanding of oral cancer pathogenesis and potentially pave the way for developing novel
therapeutic strategies.

Differentially expressed gene (DEG) analysis was performed to identify genes that exhibited significant
changes in expression between the oral squamous cell carcinoma (OSCC) group and the healthy group. A
heatmap was generated using the ggplot2 package to assess the uniformity of the samples. In addition,
clustering analysis was performed using principal component analysis (PCA) to explore the overall gene
expression patterns between the OSCC and healthy groups. DEG analysis was carried out using the limma
package in R (version 4.1.0). Linear models were constructed to identify DEGs based on their expression
levels. Genes with an absolute log2 (fold change) greater than 1.0 and an adjusted p-value of <0.05 were
considered significant DEGs.

A Venn diagram was generated to identify critical genes common to the cancer and healthy groups and
display the overlap between the samples. This allowed for the identification of genes that may have a
potential role in the development or progression of oral cancer. To investigate protein-protein interactions
(PPIs), the STRING database was utilized to construct a PPI network. This network provides insights into the
interactions and functions of proteins associated with oral cancer. Subsequently, the PPI network was
visualized using Cytoscape, a powerful network visualization and analysis tool. Furthermore, the cytoHubba
plugin for Cytoscape was employed to identify the top 10 hub genes using the maximal clique centrality
algorithm.

Extra tree classifier
The extra tree classifier is an ensemble-based machine learning algorithm, a variant of the decision tree
algorithm. It consists of many individual decision trees trained independently and in parallel. Each tree is
trained with random feature selection, threshold selection, and majority voting. After training, each tree
independently predicts the target class based on input features. The class label with the most votes is
selected as the predicted class label. This architecture introduces randomness to reduce overfitting and
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increase the diversity of individual decision trees, leading to improved model accuracy and generalization.

Results
The results show a heat map of cancer and normal sample distribution. The color scale represents the gene
expression levels, with blue indicating low expression, white indicating medium expression, and red
indicating high expression. The "annotation_col" argument assigns a different color or annotation to the
cancer and normal samples to distinguish them in the heatmap (Figure 1).

FIGURE 1: Heat map of cancer and normal sample distribution

The volcano plot provides a snapshot of changes in gene expression levels and their statistical significance.
The plot uses color to differentiate genes based on their regulation status, with upregulated genes marked in
red and downregulated genes in blue. The position and color of each gene point provide insights into its
significance and direction of regulation. The interpretation of a volcano plot should consider the
significance threshold, fold change cutoff values, and potential sources of noise and biases in the data
(Figure 2).
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FIGURE 2: Volcano plot providing a snapshot of changes in gene
expression levels and their statistical significance

The PCA plot obtained in the study shows the distribution of samples or genes in a dataset, focusing on two
principal components: PC-1 accounts for 51.1% of the total variation, capturing main patterns, while PC-2
explains 12.1%. The plot helps identify grouping or clustering patterns, as distant samples contribute the
most to the observed variation. The percentage values indicate the variability each component explains,
allowing researchers to identify relationships or groupings among samples or genes (Figure 3).

FIGURE 3: Principal component analysis (PCA) plot showing the
distribution of samples or genes in a dataset, focusing on two principal
components
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The present study also provides an insightful examination of the protein interactome associated with the
differential gene expression hubs. Furthermore, a meticulous analysis was conducted using M code written
in Power Query language to identify smaller subsets of cohesive subgroups within larger clusters. Notably,
applying CytoHubba analysis successfully identified a distinct sub-cluster among the differentially expressed
genes in the hub and top hub genes, namely, SERPINC1, TTR, HSPB1, HP, and APOA1 (Figure 4).

FIGURE 4: Interactome of differential gene expression in oral cancer

The results of the extra tree classifier model for oral cancer classification indicate high performance in terms
of accurately predicting the disease status (Table 1). The AUC value of 0.98 suggests that the model has a
high discriminatory power in distinguishing between positive and negative cases of oral cancer. A higher
AUC value indicates better model performance, with a value of 1.0 representing a perfect classifier. The CA
of 0.97 indicates that the model correctly classified 97% of the instances in the test dataset. This high
accuracy suggests that the model effectively differentiates between oral and non-cancer cases. The F1 score
of 0.97 demonstrates the balance between precision and recall, with a higher score suggesting better
performance. This indicates that the model can accurately classify both positive and negative cases of oral
cancer correctly. The precision value of 0.94 shows that when the model predicts a sample as positive (oral
cancer), it is correct approximately 94% of the time. This metric indicates the model's accuracy in correctly
identifying true positive samples and minimizing false positive predictions. Overall, the results suggest that
the extra tree classifier model exhibits high accuracy, precision, and F1 score, indicating its effectiveness in
predicting the interactomic hub genes of oral cancer. It demonstrates strong potential for clinical
application in guiding decision-making and personalized treatment strategies.

Model AUC CA F1 Precision

Extra tree classifier 0.98 0.97 0.97 0.94

TABLE 1: Extra tree classifier model performance with an accuracy score of 98%

The confusion matrix obtained from the study classifies the model's performance into four categories: true
positive (TP), true negative (TN), false positive (FP), and false negative (FN). A true positive rate of nearly
100% indicates that the model correctly identified most positive cases, while a true negative rate of nearly
100% indicates that the model accurately classified most negative cases. In conclusion, a nearly 100% true
positive and true negative rate in the confusion matrix indicates that the model performs excellently in
accurately predicting hub genes with high sensitivity and specificity (Figure 5).
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FIGURE 5: Confusion matrix of true positives and true negatives of
nearly 100%

Discussion
Saliva, a potential alternative to blood serum and urine for health monitoring, is gaining attention due to its
affordability, safety, simplicity, and non-invasiveness. Saliva analysis offers several advantages, including
non-invasive sample collection, easy storage, active patient participation, cost-effectiveness, and reduced
risk of infection. "Salivaomics" involves the study of various aspects of saliva, such as its genomes,
transcriptomics, proteomics, metabolomics, microbiomics, and microRNA. Using techniques like mass
spectrometry and proteomics, researchers have identified over 3000 distinct proteins in saliva [11,13-15].
This wealth of data holds promises for customizing therapeutic approaches in the future. The diagnosis of
oral cancer relies on comprehensive oral examinations and tissue biopsies for accurate detection. The
progression of oral carcinogenesis involves various histopathologic stages and molecular changes,
underscoring the importance of proteomics in understanding alterations in gene expression. In specific
studies [16,17], researchers analyzed hub genes from saliva samples of individuals with oral cancer and
compared them to those from healthy individuals. Identifying these hub genes provides important insights
into the molecular pathways involved in oral cancer and can potentially improve diagnostic accuracy and
treatment strategies (Figures 1-4).

SERPINC1, a serine protease inhibitor, regulates blood clotting by inhibiting coagulation factors. Mutations
in the SERPINC1 gene can lead to inherited thrombophilia. TTR, a carrier protein, binds to thyroid hormones
and vitamin A and prevents amyloid aggregation. Mutations in the TTR gene can cause amyloidosis. HSPB1,
a small heat shock protein, aids in protein folding and cell cycle regulation. HP, a glycoprotein, binds
hemoglobin to prevent oxidative damage and iron loss. Genetic variations in HP can influence susceptibility
to certain diseases. APOA1, a major high-density lipoprotein (HDL) component, plays a crucial role in
cholesterol metabolism. Mutations in the APOA1 gene can lead to disorders like familial
hypoalphalipoproteinemia [1,18,19].

The study found that HSPB1 [16,17] expression in oral squamous carcinoma cells is weak compared to
normal human oral keratinocytes, linked to promoter hypermethylation. Treatment with RG108 could
induce HSPB1 expression, as seen in primary oral squamous carcinomas. High levels of HspB1 expression in
cancer cells contribute to resistance and aggressiveness, leading to poor clinical outcomes in various
cancers. HSPB1 is involved in tumor invasion, the formation of metastatic colonies, and resistance to cancer
treatments. It targets client proteins to promote resistance to cell death and malignant behavior. Elevated
levels of HSPB1 have been found in cancer stem cells, which play a role in their maintenance and induce
long-term dormancy. HSPB1 also acts as a sensor of genetic imbalances and enhances cancer cells'
resistance to various anti-cancer drugs. Multiplex network analysis identified 46 hub genes for oral cancer,
including PIK3CG, PIK3R5, MYH7, CDC20, and CCL4, with high prediction accuracy. These genes may
improve understanding of tumorigenesis and molecular events, opening new research routes for multi-
omics biological data analysis [20].

One recent study identified 46 hub genes with 96% prediction accuracy, particularly PIK3CG, PIK3R5, MYH7,
CDC20, and CCL4, which have significant biological implications for oral cancer and offered new research
routes [21]. A study on head and neck squamous cell carcinoma patients identified 65 concordant genes,
including a 13-gene panel. Validation in the Oncomine database revealed significant over-expression of all
13 genes, with six genes (CXCL8, CXCL10, FN1, PLAU, SERPINE1, and SPP1) significantly associated with
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prognosis. This panel could improve diagnostic, prognostic, and treatment approaches [22]. Similar to these
previous study results, the current study has identified HSPB1 as one of the interactome hub genes.

The predictive extra tree classifier has shown high accuracy in analyzing interactomic hub genes in oral
cancer, with a 98% accuracy rate (Figure 5). This suggests that the identified genes are crucial in oral cancer
development and progression.

Limitations
However, the model needs validation in larger, more diverse cohorts to ensure generalizability. In addition,
the study may have a potential bias due to prioritizing genes with higher connectivity. However, these
prioritizing or hub genes could be better identified by additional in-silico computational approaches.

Future directions include integrating other omics data, developing non-invasive saliva collection methods,
and standardizing saliva collection and analysis protocols. Further research is needed to fully understand
the potential of interactomic hub genes in oral cancer diagnosis and treatment.

Conclusions
The predictive extra tree classifier's high accuracy in analyzing interactomic hub genes in oral cancer
suggests its potential for improving diagnosis and treatment strategies. However, validation in larger
cohorts and integration of omics data are needed for generalizability and robustness. Future research should
focus on non-invasive saliva collection methods and larger cohorts.
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