
Review began 03/25/2024 
Review ended 04/18/2024 
Published 04/18/2024

© Copyright 2024
Nobel et al. This is an open access article
distributed under the terms of the Creative
Commons Attribution License CC-BY 4.0.,
which permits unrestricted use, distribution,
and reproduction in any medium, provided
the original author and source are credited.

Identification of Differentially Expressed Genes
and Protein-Protein Interaction in Patients With
COVID-19 and Diabetes Peripheral Neuropathy: A
Bioinformatics and System Biology Approach
Fahim Alam Nobel , Mohammad Kamruzzaman , Mohammad Asaduzzaman , Mohammad Nasir Uddin ,
Hasib Ahammad , Mehedi Mahmudul Hasan , Tanu Rani Kar , Farha Matin Juliana , Golap Babu ,
Mohammod Johirul Islam 

1. Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, BGD 2.
Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, BGD 3. Fisheries and
Marine Science, Noakhali Science and Technology University, Noakhali, BGD 4. Biochemistry and Molecular Biology,
Primeasia University, Dhaka, BGD 5. Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, BGD

Corresponding author: Mohammod Johirul Islam, johir7479@gmail.com

Abstract
The coronavirus disease 2019 (COVID-19) pandemic has had a significant impact globally, resulting in a
higher death toll and persistent health issues for survivors, particularly those with pre-existing medical
conditions. Numerous studies have demonstrated a strong correlation between catastrophic COVID-19
results and diabetes. To gain deeper insights, we analysed the transcriptome dataset from COVID-19 and
diabetic peripheral neuropathic patients. Using the R programming language, differentially expressed genes
(DEGs) were identified and classified based on up and down regulations. The overlaps of DEGs were then
explored between these groups. Functional annotation of those common DEGs was performed using Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Bio-Planet, Reactome, and Wiki
pathways. A protein-protein interaction (PPI) network was created with bioinformatics tools to understand
molecular interactions. Through topological analysis of the PPI network, we determined hub gene modules
and explored gene regulatory networks (GRN). Furthermore, the study extended to suggesting potential drug
molecules for the identified mutual DEG based on the comprehensive analysis. These approaches may
contribute to understanding the molecular intricacies of COVID-19 in diabetic peripheral neuropathy
patients through insights into potential therapeutic interventions.

Categories: Other, Integrative/Complementary Medicine, Internal Medicine
Keywords: limma, protein-protein interaction network, therapy, gene ontology, functional enrichment, differentially
expressed genes (degs), diabetes peripheral neuropathy, diabetes, covid-19, sars-cov-2

Introduction
Following the December 2019 outbreak in China, coronavirus disease 2019 (COVID-19) was confirmed as a
new type of coronavirus in early 2020 . The infection is caused by a virus of the coronaviridae family termed
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1]. This deadly virus uses human
angiotensin-converting enzyme-2 (ACE-2) receptors to enter the human body [2]. The virus is primarily
transmitted via respiratory droplets from one person to another [3]. According to the statistics on the
worldmeter website, as of April 2024, there were 704,753,890 confirmed COVID-19 cases and 7,010,681
mortalities worldwide. 

Diabetes often results from insufficient insulin production by the pancreas or an inadequate cellular
response to the insulin produced [4]. This can lead to elevated blood glucose levels. When individuals with
diabetes contract a viral infection, their recovery may be more challenging due to fluctuating blood glucose
levels and the presence of diabetic-related conditions. The International Diabetes Federation (IDF) identifies
two key factors contributing to this increased complexity. First, the compromised immune system makes it
harder to combat viruses, potentially prolonging recovery. Second, the virus may thrive in an environment
with elevated blood glucose levels.

Peripheral neuropathy, a common complication of diabetes, results in damage to peripheral nerves, leading
to sensory disturbances, pain, and motor deficits. Long-term diabetic patients with associated comorbidities
have been observed to experience a more acute form of COVID-19 compared to non-diabetic individuals [5-
6]. The interplay between hyperglycemia and hyper-inflammation related to COVID-19 may render diabetic
patients more vulnerable, potentially increasing their fragility and mortality during the SARS-CoV-2
infection [7-8]. Given these factors, it has been suggested that COVID-19 and diabetes may exhibit various
pathological interactions. Therefore, it is crucial to investigate their molecular relationship. In this study,
we investigated the large-scale transcriptomic data of COVID-19 and diabetic patients suffering from the
complications of diabetic peripheral neuropathy. This is the first time we have studied the transcriptomics
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of patients with diabetic neuropathic complications and COVID-19 infection. So, to expose the key fact, two
datasets (GSE 147507 and GSE 95849) were selected for the transcriptomic level study. Understanding the
molecular pathways involved is critical for developing therapeutic strategies or repurposing existing
medications for COVID-19-infected diabetic patients with peripheral neuropathy.

In our research, we employed bioinformatics and systems biology approaches to identify differentially
expressed genes (DEGs) from two datasets: GSE 147507 (comprising human COVID-19 samples, including
controls) and GSE 95849 (derived from diabetic patients with peripheral neuropathy). After identifying
DEGs, we focused on mutual DEGs shared between these datasets. Subsequently, we delved into gene
ontology, informative pathways, protein-protein interaction networks, hub genes, modules, and
transcription factor (TF)-miRNA network analyses using these mutual DEGs. Finally, considering all relevant
factors, we proposed a suitable drug molecule.

Materials And Methods
In-silico analysis
The entire research process is visually summarized in Figure 1.

FIGURE 1: Schematic workflow representing overall in-silico analysis
The microarray (GSE95849) and RNA seq (GSE147507) data were retrieved from the National Center for
Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) data set. The data set was then individually
analysed through the R programming language to determine similar differentially expressed genes (DEGs). After
analysis, the common DEGs were set for transcriptomic study. The transcriptomic study included (protein-protein
interaction (PPI), hub genes, transcription factor (TF)-miRNA, gene ontology (GO) terms, pathway identification,
gene expression profiling, and the generation of drug compounds). 

 

Data collection
The National Center for Biotechnology (NCBI) Gene Expression Omnibus (GEO) database has been utilised
to investigate the genetic associations between SARS-CoV-2 and diabetic related disorders [9]. To simulate
SARS-CoV-2 infection, the GSE147507 dataset was studied [10]. From 110 samples, 23 data on COVID-19-
infected human cells were taken as diseased, and 22 data of mock and healthy lung biopsy samples were
treated as control patients. Another dataset, GSE95849, focused on transcriptional profiling of diabetic
peripheral neuropathy patients, diabetic patients, and healthy participants [11]. In this dataset, 12 samples
were designated as diseased, and six were considered control patients.

Identification of DEGs
The popular and widely used limma package [12] of the R programming language was utilized to find the
differentially expressed genes (DEGs) individually for GSE147507 and GSE95849 datasets. The cut-off was
set at 0.05 for the adjusted P-value to identify the relevant genes. Following identification, the common
DEGs between the two datasets were computed using the intercept functions of the R programming
language.
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Gene ontology (GO) and pathway-based analysis
Gene set enrichment analysis is a computational and statistical approach that investigates a set of genes'
biological, molecular, and cellular features (collectively known as GO) and their cell informative pathways
[13]. GO and pathway-based analysis are required to comprehend the biological implications of DEGs. For
GO and route enrichment analyses, a web-based program called EnrichR (https://maayanlab.cloud/Enrichr/)
was used [14]. We utilized the WikiPathways [15], Kyoto Encyclopedia of Genes and Genomes (KEGG) [16],
Bioplanet [17] and Reactome [18] databases from EnrichR, which has 102 extensive collections of libraries.
The adjusted P-value of 0.05 was set as a standard value for quantifying the most significant listed GO and
pathways for common DEGs. WikiPathways was launched in 2008, and it acts as a good platform for
biological knowledge in the form of pathway diagrams [19]. KEGG is a manually edited database resource
(https://www.kegg.jp) that integrates biological objects classified into systems, genetic, chemical, and
health information. More features were added to facilitate a more profound comprehension of more
fundamental issues, such as how molecular network systems originated in cells, and co-evolved with the
genome. They were passed on to the current species [20]. The Reactome is a knowledge base comprehensive
database tool for discovering functional relationships in biological data and provides the molecular level of
multiple cellular processes [21].

Identification of protein-protein interaction network analysis
The inspection and characterization of the PPI network are the primary goals in cellular and systems biology
for understanding and learning about cellular machinery activities [22-24]. To represent functional and
physical interaction, a protein-protein interaction network of common DEGs was generated using the IMEx
Interactome database of Network Analyst (https://www.networkanalyst.ca/) platform with a default cut-off
score of 900 [25]. Usually, a confidence score of 900 is considered high and indicates that the reported
interactions are highly reliable. After network generation, we visualized the PPI interaction network with the
Cytoscape software version v3.8.2 (https://cytoscape.org/). It is a free-source software in which multiple
datasets are aggregated to enhance performance for various interactions like PPIs, genetic interactions,
protein-DNA interactions, and many more [26].

Determination of hub genes and submodules network
Hub genes are essential to the upkeep of a biological network's connection and functionality, such as a
network regulating genes or one involving interactions between proteins. Identifying the hub genes is
crucial to comprehending how biological systems have been organised and regulated. The hub genes in this
study were detected using the Cytoscape plugin cytoHubba (http://apps.cytoscape.org/apps/cytohubba).
Cytohubba has 11 topological techniques for managing network nodes. "Modules" are the sites where the
hub genes are tightly integrated into the PPI network. ClusterViz
(https://apps.cytoscape.org/apps/clusterviz), a Cytoscape plugin, is employed for module analysis in the
existing network.

Recognition of the TF-miRNA co-regulatory network
The most critical factor in regulating gene expression is the intricate regulatory interactions among
transcription factors (TFs), microRNAs (miRNAs), and differentially expressed genes (DEGs). These TF-
miRNAs influenced DEGs at both the transcriptional and posttranscriptional stages. Understanding these
mechanisms is essential for distinguishing between healthy cellular activities and disease situations.
RegNetwork repository database from the Network Analyst platform (https://www.networkanalyst.ca/) has
been chosen to identify the TF-miRNA network. The network is visualized using the Cytoscape program
(https://cytoscape.org/).

The prediction of therapeutic drug compounds
For COVID-19 individuals with diabetes and peripheral neuropathy, drug assessment is crucial. The Enrichr
platform's Drug Signatures Database (DSigDB) identifies medications for this ailment. The database has 22
527 gene sets, 19 531 genes, and 17 389 distinct chemicals. Drugs having an adjusted P value of less than
0.05 were considered viable treatments for the ailment.

Results
Determination of DEGs in COVID-19 and diabetic comorbidities
We identified 1039 genes (38 genes were down-regulated and 901 genes were up-regulated) expressed
differentially in COVID-19-infected patients compared to controls (based on the adjusted P-value of 0.05)
(Figure 2). On the other hand, 117 genes were differentially expressed in diabetes and diabetic peripheral
neuropathic patients compared to controls (93 genes were downregulated and 23 were upregulated) (Figure
2).
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FIGURE 2: Gene expression profiling of common DEGs and their
regulation (upregulation and downregulation)
(A), (C) A heatmap shows the expression level of similar DEGs from GSE147507 and GSE95849 datasets. (B),
(D) A volcano plot visualizes the upregulated and downregulated common DEGs of GSE147507 and GSE95849
datasets.

Exploration of common DEG between COVID-19 and diabetic
complications
The identification of common DEGs is a critical component of transcriptomics research. We found four genes
commonly expressed in these two separate situations (Figure 3A). Figure 3B illustrates a heatmap of those
four common genes (B4GALNT2, MTX1, POLR2J, TUBB4B) with their expression parameter logFC.

FIGURE 3: Common DEGs between COVID-19 and diabetic
complications
(A) Identification of common DEGs from GSE147507 and GSE95849 datasets through the Venn diagram. (B) The
expression level of common DEGs in GSE147507 (COVID-19) and GSE95849 (diabetic peripheral neuropathy)
datasets. From the heat map, it was observed that B4GALNT2 gene expression is upregulated in COVID-19 than
in diabetics. TUBB4B expression is the same in both COVID-19 and diabetic patients. On the other hand, MTX1
and POLR2J are downregulated and lowly expressed in diabetic patients than COVID-19.

The validation and the verification were confirmed according to the risk category (Figure 4A). The heatmap
indicated that the MTX1 and TUBB4B genes are highly prone to inflammation. The identical circumstances
are shown in Figure 4B as well.
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FIGURE 4: Risk group identification and comparison
(A) Risk group identification of common DEGs. (B) Comparisons of risk groups in the form of a box plot.

GO and cell signalling pathway enrichment analysis
GO

Table 1 shows that the gene B4GALNT2 is involved in most of the four biological processes. The POLR2J
gene was highly enhanced in the negative regulation of DNA recombination at the telomere, regulation of
DNA recombination at the telomere, and positive regulation of viral transcription. The gene TUBB4B is
involved in natural killer cell-mediated cytotoxicity (Table 1).
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        GO biological process            

GO ID Term Genes

GO:0006040 amino sugar metabolic process B4GALNT2

GO:0009225 nucleotide-sugar metabolic process B4GALNT2

GO:0006047 UDP-N-acetylglucosamine metabolic process B4GALNT2

GO:0002228 natural killer cell-mediated immunity TUBB4B

GO:0048239 negative regulation of DNA recombination at telomere POLR2J

GO:0072695 regulation of DNA recombination at telomere POLR2J

GO:0042267 natural killer cell-mediated cytotoxicity TUBB4B

GO:0009312 oligosaccharide biosynthetic process B4GALNT2

GO:0016051 carbohydrate biosynthetic process B4GALNT2

GO:0050434 positive regulation of viral transcription POLR2J

      GO molecular function                

GO:0030275 LRR domain binding POLR2J

GO:0042288 MHC class I protein binding TUBB4B

GO:0008376 acetylgalactosaminyltransferase activity B4GALNT2

GO:0042287 MHC protein binding TUBB4B

GO:0003899 DNA-directed 5'-3' RNA polymerase activity POLR2J

GO:0034062 5'-3' RNA polymerase activity POLR2J

GO:0003725 double-stranded RNA binding TUBB4B

GO:0008194 UDP-glycosyltransferase activity B4GALNT2

GO:0016758 hexosyltransferase activity B4GALNT2

GO:0005525 GTP binding TUBB4B

      GO cellular component        

GO:0140275 MIB complex MTX1

GO:0001401 SAM complex MTX1

GO:0005665 RNA polymerase II, core complex POLR2J

GO:0005742 mitochondrial outer membrane translocase complex MTX1

GO:0031305 integral component of the mitochondrial inner membrane MTX1

GO:0065010 extracellular membrane-bounded organelle TUBB4B

GO:1903561 extracellular vesicle TUBB4B

GO:0035578 azurophil granule lumen TUBB4B

TABLE 1: Integration of top GO term related to mutual DEGs
GO: Gene ontology, DEG: Differentially expressed gene, UDP: Uridine diphosphate, LRR: Leucine rich repeat, MHC: Major histocompatibility complex,
GTP: Guanosine triphosphate, MIB: Mitochondrial intermembrane space bridging, SAM: Sterile alpha motif

POLR2J expression significantly impacts leucine rich repeat (LRR) domain binding, DNA-directed 5'-3' RNA
polymerase activity, and 5'-3' RNA polymerase activity (depending on its equal significance value). The
genes TUBB4B and B4GALNT2 have implications in major histocompatibility complex (MHC) class I protein
binding, MHC protein binding, and acetylgalactosaminyltransferase activity (Table 1). Both have also
performed double-stranded RNA binding, guanosine triphosphate (GTP) binding, uridine diphosphate
(UDP)-glycosyltransferase activity, and hexosyltransferase activity. The significant influence on cellular
components reveals that the MTX1 gene had great functionality on the MIB complex, SAM complex,
mitochondrial outer membrane translocase complex, and an integral component of the mitochondrial inner
membrane (Table 1). Furthermore, TUBB4B was found in extracellular membrane-bounded organelles,
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extracellular vesicles, azurophil granule lumen, and POLR2J in forming the RNA polymerase II core complex
(Table 1). The representation of the GO term is also summarized in the form of a linear bar diagram in Figure
5, where different color intensities denote the DEG functionality.

FIGURE 5: Top biological, molecular, and cellular functions of mutual
DEGs according to the adjusted P-value
DEG: Differentially expressed gene

Pathway analysis
We combined several pathways related to the common DEGs from COVID-19, diabetes, and diabetes
peripheral neuropathy patients and categorized them according to their adjusted P value of 0.05 (Table 2).
Four pathway activities have been identified through wiki pathways, where POLR2J is involved in Eukaryotic
Transcription Initiation WP405 and Pyrimidine metabolism WP4022. Meanwhile, the TUBB4B gene activates
the pathogenic Escherichia coli infection WP2272 and the Parkin-Ubiquitin Proteasomal System pathway
WP2359. Rectome, a widely used and verified database, showed pathways related to the genes POLR2J and
TUBB4B. The database displayed seven pathways, including signaling by FGFR2 IIIa TM Homo sapiens R-
HSA-8851708, MicroRNA (miRNA) biogenesis in Homo sapiens R-HSA-203927, Abortive elongation of HIV-1
transcript in the absence of Tat Homo sapiens R-HSA-167242, FGFR2 alternative splicing Homo sapiens R-
HSA-6803529, RNA Pol II CTD phosphorylation and interaction with CE Homo sapiens R-HSA-167160, RNA
Pol II CTD phosphorylation and interaction with CE Homo sapiens R-HSA-77075, PIWI-interacting RNA
(piRNA) biogenesis Homo sapiens R-HSA-5601884 and three pathways like Post-chaperonin tubulin folding
pathway Homo sapiens R-HSA-389977, the formation of tubulin folding intermediates by CCT/TriC Homo
sapiens R-HSA-389960, and Prefoldin mediated transfer of substrate to CCT/TriC Homo sapiens R-HSA-
389957 has been activated by POLR2J and TUBB4B respectively. Another database, Bio Planet explored seven
different pathways influenced by gene POLR2J, and they were Viral messenger RNA biosynthesis, Regulatory
RNA pathways, Messenger RNA capping, a Dual incision reaction in TC-NER, RNA polymerase, HIV-1
transcription initiation, and Eukaryotic transcription initiation. This database has also shared the activation
of the post-chaperonin tubulin folding pathway, the Cooperation of prefoldin and TriC/CCT in actin, and the
tubulin folding pathway regulated by the TUBB4B gene. A single pathway in the Bio Planet database called
Protein metabolism strongly mediated MTX1 and TUBB4B (Table 2).
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Databases Pathways Genes

WikiPathways

Eukaryotic Transcription Initiation WP405 POLR2J

Pathogenic Escherichia coli infection WP2272 TUBB4B

Parkin-Ubiquitin Proteasomal System pathway WP2359 TUBB4B

Pyrimidine metabolism WP4022 POLR2J

Reactome

Signaling by FGFR2 IIIa TM Homo sapiens R-HSA-8851708 POLR2J

Post-chaperonin tubulin folding pathway Homo sapiens R-HSA-389977 TUBB4B

MicroRNA (miRNA) biogenesis Homo sapiens R-HSA-203927 POLR2J

Abortive elongation of HIV-1 transcript in the absence of Tat Homo sapiens R-HSA-167242 POLR2J

Formation of tubulin folding intermediates by CCT/TriC Homo sapiens R-HSA-389960 TUBB4B

FGFR2 alternative splicing Homo sapiens R-HSA-6803529 POLR2J

Prefoldin mediated transfer of substrate to CCT/TriC Homo sapiens R-HSA-389957 TUBB4B

RNA Pol II CTD phosphorylation and interaction with CE Homo sapiens R-HSA-167160 POLR2J

RNA Pol II CTD phosphorylation and interaction with CE Homo sapiens R-HSA-77075 POLR2J

PIWI-interacting RNA (piRNA) biogenesis Homo sapiens R-HSA-5601884 POLR2J

BioPlanet

Viral messenger RNA biosynthesis POLR2J

Protein metabolism MTX1; TUBB4B

Post-chaperonin tubulin folding pathway TUBB4B

Regulatory RNA pathways POLR2J

Cooperation of prefoldin and TriC/CCT in actin and tubulin folding TUBB4B

Messenger RNA capping POLR2J

Dual incision reaction in TC-NER POLR2J

RNA polymerase POLR2J

HIV-1 transcription initiation POLR2J

Eukaryotic transcription initiation POLR2J

KEGG
Huntington disease TUBB4B; POLR2J

RNA polymerase POLR2J

TABLE 2: Top pathway analysis based on adjusted P value of shared DEGs
DEG: Differentially expressed gene

A KEGG database showed the activity of two DEGs (TUBB4B, POLR2J) (Table 2). Both TUBB4B POLR2J genes
worked on Huntington's disease and RNA polymerase (Table 2). The pathways related to the common DEGs
are also shown in Figure 6.
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FIGURE 6: Top pathway identification (Wiki Pathways, BioPlanet,
Reactome, KEGG) based on adjusted P-value.
KEGG: Kyoto Encyclopedia of Genes and Genomes

Protein-protein interaction network analysis of common DEG
After enrichment analysis, the common DEGs have been subjected to the Network Analyst platform to view
the interaction profile among the other genes. From there, we identified the relationships of several genes
with the MTX1, POLR2J, and TUBB4B genes (Figure 7).
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FIGURE 7: Protein-protein interaction network analysis of common
DEGs determined in this study
Protein-protein interaction network analysis of common differentially expressed genes (DEGs) determined from
coronavirus disease 2019 (COVID-19), diabetic as well as diabetic peripheral neuropathy affected patient
datasets. The common genes are displayed through pink color, while the light blue color dictates, the genes that
have a strong connection with common genes. The network is formed by 86 nodes with 87 edges.

TUBB4B and POLR2J interact with 53 and 26 genes, respectively, whereas MTX1 interacts with only eight
genes (Figure 7). There was no interaction found for B4GALNT2. 87 nodes with 86 edges were formed in this
PPI network (Figure 7).

Detection of hub genes based on topological analysis and module
identification from the PPI network
To achieve the central gene, the degree of the topological algorithm was utilized, and it revealed five genes
(MTX1, POLR2J, POLR2B, UBC, and TUBB4B) (Table 3).

Hub gene   Degree   Bottle Neck   Closeness centrality   Betweenness centrality   Stress

UBC 2 9 37.58333 1248 1248

POLR2B 2 87 42.08333 3120 3120

MTX1 8 8 30.75 1148 1148

POLR2J 26 87 45.15 3650 3650

TUBB4B 52 87 63.66667 6536 6536

TABLE 3: Topological results analysis for top five hub genes

These five genes were highly interconnected to each other and were termed hub genes (Figure 8).
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FIGURE 8: Generation of hub genes from the PPI network
MTX1(yellow), UBC (pink), POLR2J(orange), and TUBB4B(red) are the hub genes in the network. The network is
determined by 87 nodes and 86 edges.

It is essential to identify the hub genes because they could be potential biomarkers for future therapy in
many diseases. We also tried to identify module network analysis to see the close connectivity among genes,
from where we found only one interconnected sub-module network consisting of 27 nodes with 26 edges
(Figure 9).
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FIGURE 9: Module interaction network analysis to show the highly
interconnected hub genes with their related ones
Highly interconnected hub genes (blue) and their related ones (red).

Gene regulatory network (GRN) analysis of common DEG
To get inside the common DEGs, studies of TF and miRNA are essential. Because the majority of genes are
regulated at both the transcriptional (via TF) and post-transcriptional (via miRNA) levels, both TF and
miRNA have highly significant molecular insights. In this study, we scrutinized 37 TF and 11 miRNA highly
connected by the existing common differentially expressed genes of COVID-19 and diabetic patients having
complications with diabetic peripheral neuropathy (Figure 10).
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FIGURE 10: TF and miRNA interaction network analysis
The network consists of 53 nodes and 57 edges. The miRNA network is shown in a red circle, while the
transcription factor (TF) is demonstrated through a violet color.  The network is linked through green circles
denoted as central nodes.

Repurposing traditional drug compounds
Table 4 represents drug molecules that are closely related to shared genes. The drugs that were involved
here are amikacin PC3 DOWN, paclitaxel TTD 00010012, paclitaxel PC3 DOWN, hydroxychloroquine sulfate,
docetaxel, hmba CTD 00000732, sulfasalazine BOSS, ambroxol PC3 DOWN, vincristine sulfate. The potency
of these drugs is also shown in Figure 11.

Name of drugs Genes

amikacin PC3 DOWN TUBB4B; POLR2J

paclitaxel TTD 00010012 TUBB4B

paclitaxel PC3 DOWN TUBB4B; POLR2J

HYDROXYCHLOROQUINE SULFATE BOSS MTX1

vinblastine TTD 00011808 TUBB4B

Docetaxel TUBB4B

hmba CTD 00000732 TUBB4B

sulfasalazine BOSS MTX1

ambroxol PC3 DOWN TUBB4B; POLR2J

Vincristine sulfate TUBB4B

TABLE 4: Determination of therapeutic compounds relying on COVID-19 and diabetic
complications
COVID-19: Coronavirus disease 2019
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FIGURE 11: Drug compounds for healing COVID-19-affected and
diabetic peripheral neuropathic patients
COVID-19: Coronavirus disease 2019

Discussion
The progression of SARS-CoV-2 infection might vary across individuals, with the genetic component of an
individual having a crucial impact. Determining the genes linked to different levels of COVID-19 severity
can be helpful in therapeutic settings. Gaining insights into the primary genes associated with severe disease
manifestations is essential for predicting the most harmful symptoms and responding promptly to patients
in this context.

Diabetic peripheral neuropathy is one of the critical complications of diabetes, affecting millions of people
worldwide [27]. This complication affects more than half of diabetic patients [28]. In this study, we focused
on the genes that are mutually expressed in both conditions. By analysing two datasets, four DEGs were
found to be commonly expressed. Among them, B4GALNT2 was highly expressed in COVID-19 as well as
diabetic peripheral neuropathic patients (Figure 3). Conversely, the remaining three genes showed
downregulation in both cases. Understanding the ontological and pathway processes of the DEG offers
valuable insights into the severity of COVID-19 and its comorbidities. The significant functionality of the
common DEGs is shown in Table 1, where some functionalities are more prevalent and related to disease
severity. On the other hand, Table 2 represents the principal pathways related to the identified genes. A
visual representation of the gene ontology (GO) terms and the pathways is shown in Figure 5.

A strong PPI, gene-miRNA, and TF-gene regulatory network was generated based on the common DEGs. The
PPI network was constructed by meticulously connecting 87 nodes via 86 edges (Figure 7). This analysis
brought to light five central nodes or hub genes (MTX1, POLR2J, TUBB4B, POLR2B, and UBC) that govern all
the interactions within the network (Figure 8). After hub gene generation, highly interconnected modules
were also determined to have the most promising interaction network (Figure 9). Transcriptional factors (TF)
and post-transcriptional regulation (miRNA) are the two essential components of gene expression. Here, TF
and miRNA for common DEG were also determined to understand what types of regulatory genes are directly
involved in the network. In total, 37 TFs and 11 miRNAs were identified through this interacting network
(Figure 10). The majority of the TFs interacted strongly with TUBB4B genes. On the other hand, miRNA was
only associated with MTX1 genes (Figure 10). This type of network has a potential implication in many
research projects concerning the prediction of disease genes, taking into account factors such as disease
loci, gene-disease phenotypic relationships, and disease-specific changes in gene expression [29]. Using
DSigDB, the top 10 therapeutic interventions targeting the DEG were identified (Table 4). Among them,
amikacin PC3 DOWN, paclitaxel PC3 DOWN, and ambroxol PC3 DOWN can inhibit the expression of 2 genes
(TUBB4B and POLR2J). Only TUBB4B can be controlled by paclitaxel TTD 00010012, docetaxel, hmba CTD
00000732, and vincristine sulfate. Hydroxychloroquine sulfate Boss and the sulfasalazine Boss can regulate
the MTX1 gene. No therapy was identified against the B4GALNT2 genes (Table 4). Moreover, no interaction
network and pathways were found to be activated for that gene (Figures 7-8).

So, with other common DEG, the gene (B4GALNT2) can be a potential biomarker for revealing the
connection between COVID-19 and associated comorbidities. For instance, they have the potential to aid in
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risk stratification and early detection of those who are at high risk of developing severe symptoms. This
information can help to guide the allocation of healthcare resources, allowing for more intensive
surveillance and focused therapies for patients who are regarded at high risk. Second, including these
possible biomarkers in diagnostic tests has the potential to improve the accuracy of illness predictions.
Third, the discovery of these biomarkers paves the way for the development of targeted medicines that
modulate the linked pathways, with the goal of reducing disease severity and improving overall patient
outcomes.

The study has some limitations. It focused on the analysis of transcriptome datasets from COVID-19 and
diabetic peripheral neuropathic patients, which may not fully represent the entire population of individuals
with these conditions. The study suggested potential drug molecules for the identified mutual differentially
expressed genes (DEGs) based on comprehensive analysis, but further experimental validation is needed to
confirm the effectiveness and safety of these potential drugs. It did not provide any characteristics of the
patients included in the analysis, which may limit the generalizability of the findings. Lastly, the study did
not discuss the potential confounding factors or limitations of the bioinformatics tools and databases used
in the analysis.

Conclusions
Our comprehensive analysis revealed that four common genes, B4GALNT2, MTX1, POLR2J, and TUBB4B are
differentially expressed in patients with both COVID-19 and diabetic peripheral neuropathy. By examining
these differentially expressed genes (DEGs), we identified shared pathways and GO functions across
biological, molecular, and cellular contexts. Furthermore, we explored their intricate networks with other
genes and regulatory mechanisms. Based on these findings, we propose potential drug candidates for
treating patients with COVID-19 and diabetic peripheral neuropathy. However, experimental validation
remains essential to confirm their efficacy.
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