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Abstract

Precise prognostication is vital for guiding treatment decisions in people diagnosed with pancreatic cancer.
Existing models depend on predetermined variables, constraining their effectiveness. Our objective was to
explore a novel machine learning approach to enhance a prognostic model for predicting pancreatic cancer-
specific mortality and, subsequently, to assess its performance against Cox regression models. Datasets were
retrospectively collected and analyzed for 9,752 patients diagnosed with pancreatic cancer and with surgery
performed. The primary outcomes were the mortality of patients with pancreatic carcinoma at one year,
three years, and five years. Model discrimination was assessed using the concordance index (C-index), and
calibration was assessed using Brier scores. The Survival Quilts model was compared with Cox regression
models in clinical use, and decision curve analysis was done. The Survival Quilts model demonstrated robust
discrimination for one-year (C-index 0.729), three-year (C-index 0.693), and five-year (C-index 0.672)
pancreatic cancer-specific mortality. In comparison to Cox models, the Survival Quilts models exhibited a
higher C-index up to 32 months but displayed inferior performance after 33 months. A subgroup analysis
was conducted, revealing that within the subset of individuals without metastasis, the Survival Quilts
models showcased a significant advantage over the Cox models. In the cohort with metastatic pancreatic
cancer, Survival Quilts outperformed the Cox model before 24 months but exhibited a weaker performance
after 25 months. This study has developed and validated a novel machine learning-based Survival Quilts
model to predict pancreatic cancer-specific mortality that outperforms the Cox regression model.

Categories: Gastroenterology, General Surgery, Oncology
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) stands as one of the major contributors to global cancer-related
fatalities, and its incidence is on the rise [1]. Early detection poses a significant challenge, often occurring at
an advanced stage. About 80% of patients receive a diagnosis when the disease has progressed substantially,
resulting in limited long-term survival (2-9% at five years) [2]. While pancreatic resections at high-volume
institutions show a relatively low mortality rate (3.8%), short-term morbidity remains high (30-40%) [3,4].
Thus, the imperative lies in refining patient selection and ensuring surgery benefits those likely to gain
while sparing others from a potentially burdensome procedure with a low chance of long-term survival.

Past research has identified clinical and pathological factors predictive of overall survival in PDAC. For
instance, Brennan et al. created a clinical nomogram based on 555 pancreatic resections, yielding a superior
C-index of 0.64 in Cox multivariate analysis compared to traditional tumor, node, and metastasis (TNM)
staging [5]. However, the clinical applicability is unsatisfactory, hampered by a modest sample size that
compromises generalizability. Furthermore, existing personalized models rely heavily on traditional
statistical methods with predetermined variables and interactions.

Amid the rapidly growing integration of machine learning in healthcare, novel prognostic models are
emerging for various diseases [6-9]. Machine learning, a data-driven application of artificial intelligence,
allows systems to autonomously learn and improve without explicit programming. Unlike traditional
models, machine learning can explore datasets independently, identifying new variables and intricate
relationships [10]. Recently, a novel machine learning-based approach produced a prognostic model called
Survival Quilts to predict 10-year prostate cancer-specific mortality, which yielded similar performance to
the top-ranked prognostic models using only standard clinicopathological variables [10]. However, this
approach has not been applied to a large dataset for predicting short-term mortality in pancreatic cancer
post-surgery.

Hence, this study aims to pioneer a novel machine learning approach to refine a prognostic model, Survival
Quilts, for predicting pancreatic cancer-specific mortality. Additionally, it seeks to evaluate the performance
of this approach against Cox regression models, providing a fresh perspective on prognostic modeling in the
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context of pancreatic cancer.

Materials And Methods

Data source

The patients diagnosed with pancreatic carcinoma in this study were specifically chosen from the
Surveillance, Epidemiology, and End Results (SEER) "SEER Research Plus Data, 18 Registries, Nov 2020 Sub
(2000-2018)" dataset, accessible at http://seer.cancer.gov. The SEER database encompasses information
about cancer patients across 18 regions in the United States, representing approximately 28% of the entire
national population. To identify patients with pancreatic cancer in the United States between 2010 and
2015, we utilized the SEER*Stat software version 8.4.0 (National Cancer Institute, Bethesda, Maryland,
USA). Permission to access the database was granted through the completion and submission of the SEER
Research Data Agreement form via email.

Study population

We identified patients diagnosed with pancreatic carcinoma by utilizing the site-recoded pancreas from the
third revision of the International Classification of Diseases for Oncology codes (ICD-0-3). The inclusion
criteria encompassed participants aged 20-80 years who were diagnosed with pancreatic carcinoma and
underwent surgery between January 1, 2010, and December 31, 2015.

The exclusion criteria in this study were defined as follows: (a) patients with unknown survival months or
survival months equal to zero, (b) patients with an unknown American Joint Committee on Cancer (AJCC)
7th TNM stage, (c) patients with an unknown histological grade, (d) patients with unknown tumor size, and
(e) patients with unknown positive regional node status.

Predictors and outcome

Model inputs spanned a variety of demographic, clinical, and therapeutic variables. These covariates
included in the analysis were age at diagnosis, sex, race, histologic grade, AJCC T category, AJCC N category,
AJCC M category, regional nodes positive, CS tumor size, first malignant primary indicator, total number of
in situ/malignant tumors, total number of benign/borderline tumors, primary site, histology recode-broad
groupings, chemotherapy recode, and radiation recode. All variables were treated as categorical, except for
age, tumor size, and regional nodes positive, which were considered continuous. The primary outcomes
assessed were the mortality rates of patients diagnosed with pancreatic carcinoma at one year, three years,
and five years.

Model development

We developed our machine learning-based survival model using Survival Quilts, an open-source software
designed to automate the deployment of machine learning in survival analysis [11]. Survival Quilts, serving
as an ensemble of diverse survival models, automatically weighs these models and adjusts their parameters
in a single ensemble tailored to the specific dataset. The survival function generated by Survival Quilts
combines profiles from various models, optimized to consider discriminative performance and calibration.
As a result, Survival Quilts encompass multiple statistical and machine learning-based models for survival
prediction. This automated software eliminates the need for researchers to choose a specific survival model,
making machine learning expertise unnecessary. The study included four models, ranging from traditional
statistical models to state-of-the-art deep learning models: Cox proportional hazards, random survival
forest, conditional inference survival forest, and DeepHit models [12-14].

The SEER cohort was randomly split (8:2) into the training and testing sets using the Python version 3.9.0
package scikit-learn (Python Software Foundation, Wilmington, Delaware, USA). The training cohort is the
portion of the dataset used to train the machine learning model. During the training process, the model
learns patterns and relationships within the data. The test cohort is a separate portion of the dataset that is
not used during the training phase but is reserved for evaluating the performance of the trained model. This
cohort helps assess how well the model generalizes to new, unseen data. In this study, the training-cohort
data were utilized to develop a Survival Quilts model, while the test-cohort data were employed to conduct
Survival Quilts analysis, assessing the model's effectiveness in predicting the mortality of patients with
pancreatic carcinoma. In parallel, multivariable Cox proportional hazards models were constructed using the
same covariates for comparative analysis.

For model evaluation, the concordance index (C-index) was calculated to gauge model discrimination, and
Brier scores were computed for calibration. Model calibration, which reflects the alignment between
predicted and observed outcomes, was further evaluated through visual inspection of calibration plots.

The performance evaluation of both models commenced with an initial assessment of the entire cohort. Due
to its critical impact on the prognosis of pancreatic cancer, including lymphatic and distant metastases, we
conducted further analysis on two distinct groups: the non-metastatic pancreatic carcinoma population
(individuals without lymphatic or distant metastasis, NOMO0), and the metastatic pancreatic carcinoma
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population (individuals with lymphatic or distant metastasis).

Model visualization

We also developed a user-friendly interface to facilitate survival predictions. This interface consists of two
views: the user input view and the mortality prediction view. The user input view is designed to help users
input all entries regarding patient characteristics using the XML schema constructed based on the features
input into the Survival Quilts model. The user input view allows users to predict mortality by clicking the
predict button.

Statistical analysis

A two-sided p-value less than 0.05 was considered to be statistically significant. All statistical analyses were
performed with SPSS Statistics version 25 (IBM Corp. Released 2017. IBM SPSS Statistics for Windows,
Version 25.0. Armonk, NY: IBM Corp.) software. The C-index and Brier scores were calculated by Python
version 3.9.0. All the figures were plotted by the Python (version 3.9.0) package matplotlib.

Role of funding source

All funding sources played no role in the design of the study, the collection, analysis, and interpretation of
data, in writing the manuscript, or in the decision to submit the paper for publication.

Results
Screening process

Figure I illustrates our data assembly process. A total of 71,359 patients diagnosed with pancreatic cancer
between January 1, 2010, and December 31, 2015, were enrolled in the SEER database. Among these, 13,059
patients lacked survival data or had survival months equal to zero, 44,997 patients did not undergo surgery
or had unknown surgery status, and 2,738 patients had missing data for at least one essential domain (CS
tumor size, regional node positive, TNM stage, grade). Additionally, 813 patients outside the study age range
(20-80 years) were excluded. The final study population comprised 9,752 patients.
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Patients diagnosed with pancreatic cancer between Jan 1, 2010, and Dec 31, 2015
N=71359

Exclusion: Patients with unknown survival months or
patients with survival months equal to zero

Patients with survival data
N=58300

Exclusion: Patients without surgery performed or
unknown

Patients with survival data and surgery performed
N=13303

Exclusion: Patients with unknown clinical Records (CS
tumor size, Regional nodes positive, T, N, M, grade)

Patients with survival data and surgery performed and complete clinical information
N=10565

Exclusion: Patients who were outside of the study age
range (20-80 years)

Final cohort: N = 9752

Train cohort: N=7802 Test cohort: N=1950

FIGURE 1: The flow diagram of patient data selection

Baseline characteristics

Table I presents the main baseline clinical characteristics of the 9,752 patients with pancreatic carcinoma
included in the study, comprising 4,726 female patients (51.5%) and 5,026 male patients (49.5%). The
patients had an average age of 63.6 * 10.5 years (mean #* SD), with the majority being of white ethnicity
(80.7%). Nearly all cancers were categorized as T stage 1-3 (9,328 (95.7%)) and grade group 1-3 (9,594
(98.4%)). Lymph node metastases were evident in 5,840 patients (59.9%), while distant metastases were
present in 614 patients (6.3%). The median (interquartile range) follow-up time stood at 27 (13-52) months,
with 6,632 patients (68.0%) experiencing events during this period. Further details of the baseline
information are available in Table 1.

Variables Overall N=9752 Train cohort N=7802 Test cohort N=1950 p-value
Survival months median (range) 27 (13-52) 27 (13-52) 27 (12-52) 0.856
Death status (%) 0.823
Alive 3120 (32.0) 2492 (31.9) 628 (32.2)

Dead 6632 (68.0) 5310 (68.1) 1322 (67.8)

Age at diagnosis meantsd 63.6£10.5 63.7£10.5 63.4+10.4 0.13
Sex (%) 0.92
Female 4726 (48.5) 3779 (48.4) 947 (48.6)

Male 5026 (51.5) 4023 (51.6) 1003 (51.4)
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Race recode (%) 0.663
White 7873 (80.7) 6296 (80.7) 1577 (80.9)

Black 1004 (10.3) 797 (10.2) 207 (10.6)

Others 875 (9.0) 709 (9.1) 166 (8.5)

Grade (%) 0.559
Well differentiated; Grade | 2340 (24.0) 1867 (23.9) 473 (24.3)

Moderately differentiated; Grade Il 4330 (44.4) 3472 (44.5) 858 (44.0)

Poorly differentiated; Grade Il 2924 (30.0) 2330 (29.9) 594 (30.5)

Undifferentiated; anaplastic; Grade IV 158 (1.6) 133 (1.7) 25(1.3)

Derived AJCC T, 7th ed (2010-2015) (%) 0.706
T1 1066 (10.9) 859 (11.0) 207 (10.6)

T2 1427 (14.6) 1155 (14.8) 272 (13.9)

T3 6835 (70.1) 5452 (69.9) 1383 (70.9)

T4 424 (4.3) 336 (4.3) 88 (4.5)

Derived AJCC N, 7th ed (2010-2015) (%) 0.787
NO 3912 (40.1) 3135 (40.2) 777 (39.8)

N1 5840 (59.9) 4667 (59.8) 1173 (60.2)

Derived AJCC M, 7th ed (2010-2015) (%) 0.898
Mo 9138 (93.7) 7312 (93.7) 1826 (93.6)

M1 614 (6.3) 490 (6.3) 124 (6.4)

Primary site (%) 0.157
C25.0 head of pancreas 4944 (63.4) 1248 (64.0) 6192 (63.5)

C25.1 body of pancreas 723 (9.3) 170 (8.7) 893 (9.2)

C25.2 tail of pancreas 1340 (17.2) 307 (15.7) 1647 (16.9)

Others 795 (10.2) 225 (11.5) 1020 (10.5)

Histology recode - broad groupings (%) 0.589
Epithelial neoplasms, NOS 105 (1.3) 24 (1.2) 129 (1.3)

Adenomas and adenocarcinomas 4451 (57.0) 1138 (58.4) 5589 (57.3)

Cystic, mucinous, and serous neoplasms 321 (4.1) 88 (4.5) 409 (4.2)

Ductal and lobular neoplasms 2790 (35.8) 665 (34.1) 3455 (35.4)

Complex epithelial neoplasms 91 (1.2) 27 (1.4) 118 (1.2)

Others 44 (0.6) 8(0.4) 52 (0.5)

Number of in situ/malignant tumors (%) 0.128
1 5938 (76.1) 1516 (77.7) 7454 (76.4)

>1 1864 (23.9) 434 (22.3) 2298 (23.6)

Number of benign/borderline tumors (%) 0.803
0 7750 (99.3) 1938 (99.4) 9688 (99.3)

>0 52(0.7) 12 (0.6) 64 (0.7)

First malignant primary indicator (%) 0.232
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No 1705 (17.5) 1382 (17.7) 323 (16.6)

Yes 8047 (82.5) 6420 (82.3) 1627 (83.4)

Regional node positive median (range) 1 (0-30) 1 (0-31] 1(0-30J 0.944
CS tumor size median (range), mm 31 (23-43) 31 (23-43) 30 (23-43) 0.544
Radiotherapy (%) 0.358
No/unknown 5714 (73.2) 1408 (72.2) 7122 (73.0)

Yes 2088 (26.8) 542 (27.8) 2630 (27.0)

Chemotherapy (%) 0.858
No/unknown 2998 (38.4) 745 (38.2) 3743 (38.4)

Yes 4804 (61.6) 1205 (61.8) 6009 (61.6)

TABLE 1: Demographic characteristics of patients included in the analysis

AJCC: American Joint Committee on Cancer

1 year
Survival Quilts
Cox

3 year
Survival Quilts
Cox

5 year
Survival Quilts

Cox

Additionally, demographic characteristics in the two study cohorts (train cohort and test cohort) are
presented in Table 1, demonstrating no significant differences in clinical characteristics between the cohorts
(p>0.05).

Model performance in the full cohort

The predictive performance of the models was measured using the C-index, Brier score, calibration plots,
and decision curve analysis. The values of the C-index and Brier score for each model are presented in Table
2.

C-index Brier score
0.726 0.211
0.698 0.211
0.693 0.299
0.698 0.299
0.672 0.244
0.695 0.232

TABLE 2: Discrimination and calibration of each model at predicting one-, three-, and five-year

mortality

For the one-year mortality prediction, the Survival Quilts model (C-index 0.726) showed better
discrimination than the Cox model (C-index 0.698). However, for the three- and five-year mortality
prediction, the C-index of the Survival Quilts model (thee-year: 0.693; five-year: 0.672) was lower than that
of the Cox model (three-year: 0.698; five-year:0.695). The overtime C-index in Figure 2 revealed that the
Survival Quilts model exhibited a higher C-index before 32 months but performed worse after 33 months.
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FIGURE 2: Overtime C-index and Brier score for predicting pancreatic
cancer-specific mortality

The evaluation of predictive performance for pancreatic cancer-specific mortality involves the consideration of the
overtime C-index (denoted as A) and Brier score (represented by B).

The model's calibration was assessed using the Brier score and calibration plots. The overtime Brier score
plots in Figure 2 showed no significant difference between the two models before 57 months (the difference
being less than 0.01), with the Cox model performing slightly better after 57 months (the difference being
more than 0.01). Regarding the calibration plot (Figure 3), actual outcomes for three- and five-years were
highly consistent with predictions from both models, with most points closely aligning with the 45° line.
However, in the Survival Quilts subsequently, we evaluated model performance through decision curve
analysis, considering the impact on treatment decision-making. For the one-year prediction, the Survival
Quilts model provided a greater gain than the Cox model, although there was no significant difference
between the two models in predicting three- and five-year mortality (Figure 4).
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FIGURE 3: Calibration plots of observed versus predicted risk.

The prediction of pancreatic cancer-specific mortality at one-year (denoted as A), three-year (denoted as B), and
five-year (denoted as C) intervals utilized Survival Quilts and Cox models.
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FIGURE 4: Decision curve analysis

The prediction of pancreatic cancer-specific mortality at one-year (denoted as A), three-year (denoted as B), and
five-year (denoted as C) intervals utilized Survival Quilts and Cox models. (The clinical net benefit for each
prediction model is calculated across a range of risk threshold probabilities. Clinical net benefit is defined as the
minimum probability of disease at which further intervention would be warranted.)

Model performance in subgroups

We initially focused on the population with non-metastatic pancreatic carcinoma. The screening process
and baseline characteristics are detailed in Figure 5 and Table 3. Overtime C-index and Brier scores are
depicted in Figure 6. Concerning model discrimination, the Survival Quilts models consistently
outperformed the Cox models, displaying a higher C-index from two to 60 months. In terms of model
calibration, no significant differences were observed before 45 months, but the Survival Quilts model
exhibited slightly poorer performance after 45 months. Calibration plots and decision curve analyses for
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one-, three-, and five-year mortality predictions are included in Figures 7-8.

Patients diagnosed with pancreatic cancer between Jan 1, 2010, and Dec 31, 2015
N=71359

Exclusion: Patients with unknown survival months or
patients with survival months equal to zero

Patients with survival data
N=58300

Exclusion: Patients without surgery performed or
unknown

Patients with survival data and surgery performed
N=13303

Exclusion: Patients with unknown clinical Records
(CS tumor size, T, grade)

Patients with survival data and surgery performed and complete clinical information
N=11246

Inclusion: age range (20-80 years); NO; MO

Non-metastatic cohort: N = 4268

FIGURE 5: The flow diagram of patients with non-metastatic pancreatic
carcinoma selection

Variables Overall N=4268 Train cohort N=3414 Test cohort N=854 p-value
Survival months median (range) 44 (21-65) 44 (21-6511 44 (20-641 0.471
Death status (%) 0.976
Alive 2287 (53.6) 1829 (53.6) 458 (53.6)

Dead 1981 (46.4) 1585 (46.4) 396 (46.4)

Age at diagnosis meantsd 62.8+11.3 62.7+11.4 63.1£10.9 0.443
Sex (%) 0.277
Female 2145 (50.3) 1730 (50.7) 415 (48.6)

Male 2123 (49.7) 1684 (49.3) 439 (51.4)

Race recode (%) 0.208
White 3373 (79.0) 2712 (79.4) 661 (77.4)

Black 432 (10.1) 346 (10.1) 86 (10.1)

Others 463 (10.8) 356 (10.4) 107 (12.5)

Grade (%) 0.921
Well differentiated; Grade | 1749 (41.0) 1395 (40.9) 354 (41.5)

Moderately differentiated; Grade Il 1638 (38.4) 1315 (38.5) 323 (37.8)
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Poorly differentiated; Grade Il 812 (19.0) 647 (19.0) 165 (19.3)

Undifferentiated; anaplastic; Grade IV 69 (1.6) 57 (1.7) 12 (1.4)

Derived AJCC T, 7th ed (2010-2015) (%) 0.981
T1 1159 (27.2) 929 (27.2) 230 (26.9)

T2 1015 (23.8) 813 (23.8) 202 (23.7)

T3 1958 (45.9) 1565 (45.8) 393 (46.0)

T4 136 (3.2) 107 (3.1) 29 (3.4)

Primary site (%) 0.572
C25.0 head of pancreas 2051 (48.1) 1623 (47.5) 428 (50.1)

C25.1 body of pancreas 587 (13.8) 476 (13.9) 111 (13.0)

C25.2 tail of pancreas 1072 (25.1) 862 (25.2) 210 (24.6)

Others 558 (13.1) 453 (13.3) 105 (12.3)

Histology recode - broad groupings (%) 0.922
Epithelial neoplasms, NOS 62 (1.5) 53 (1.6) 9(1.1)

Adenomas and adenocarcinomas 2850 (66.8) 2280 (66.8) 570 (66.7)

Cystic, mucinous, and serous neoplasms 232 (5.4) 184 (5.4) 48 (5.6)

Ductal and lobular neoplasms 1050 (24.6) 839 (24.6) 211 (24.7)

Complex epithelial neoplasms 49 (1.1) 38 (1.1) 11 (1.3)

Others 25 (0.6) 20 (0.6) 5 (0.6)

Number of in situ/malignant tumors (%) 0.938
1 3133 (73.4) 2507 (73.4) 626 (73.3)

>1 1135 (26.6) 907 (26.6) 228 (26.7)

Number of benign/borderline tumors (%) 0.426
0 4228 (99.1) 3380 (99.0) 848 (99.3)

>0 40 (0.9) 34 (1.0) 6 (0.7)

First malignant primary indicator (%) 0.499
No 810 (19.0) 641 (18.8) 169 (19.8)

Yes 3458 (81.0) 2773 (81.2) 685 (80.2)

CS tumor size median (range), mm 25 (17-39) 25 (17-39) 27(18-39) 0.385
Radiotherapy (%) 0.462
No/unknown 3461 (81.1) 2776 (81.3) 685 (80.2)

Yes 807 (18.9) 638 (18.7) 169 (19.8)

Chemotherapy (%)

No/unknown 2388 (56.0) 1916 (56.1) 472 (55.3) 0.654
Yes 1880 (44.0) 1498 (43.9) 382 (44.7) O

TABLE 3: Demographic characteristics of patients with non-metastatic pancreatic cancer

AJCC: American Joint Committee on Cancer

2024 Sun et al. Cureus 16(3): €57161. DOI 10.7759/cureus.57161 11 of 20



Cureus

A B
—— Survivalquilts 0.35 4
0.85 — Cox 0.30
0.25
. 0804 g
@ 9
.E ? 0.20 4
: 2
O 075 & 0.15
0.10 1
0.70 1 —— Survivalquilts
0.05 Sox
— 77— 77— — 7T
0 5 10 15 20 25 30 35 40 45 S50 55 60 0 5 10 15 20 25 30 35 40 45 50 55 60
Survival months Survival months
© 090 o
; —— Survivalquilts —— Survivalquilts
0.85 4 — Cox 0.25 1 — Cox
0.80 4 0 020
= Q
8 0.75 ]
= 5 0.15 4
© 0704 2
0.66 - 0.10 1
1
0.60 ! 0.05 1
Il
0 5 10 15 20 25 30 35 40 45 50 55 60 0 5 10 15 20 25 30 35 40 45 50 55 60

Survival months

Survival months

FIGURE 6: The evaluation of predictive performance for the mortality of
both non-metastatic and metastatic pancreatic cancer
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metastatic pancreatic cancer. (D) Overtime Brier score for predicting mortality in metastatic pancreatic cancer.
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FIGURE 7: Calibration plots of the non-metastatic cohort

The prediction of non-metastatic pancreatic cancer-specific mortality at one-year (denoted as A), three-year
(denoted as B), and five-year (denoted as C) intervals utilized Survival Quilts and Cox models.
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FIGURE 8: Decision curve analysis of the non-metastatic cohort

The prediction of non-metastatic pancreatic cancer-specific mortality at one-year (denoted as A), three-year
(denoted as B), and five-year (denoted as C) intervals utilized Survival Quilts and Cox models.

Subsequently, we explored the performance of the Survival Quilts model in the cohort with metastatic
pancreatic carcinoma. The screening process and baseline characteristics for this cohort are outlined in
Figure 9 and Table 4. Overtime C-index and Brier scores are presented in Figure 6. The findings mirror those
of the full cohort, where the Survival Quilts model demonstrated a higher C-index before 24 months but
performed less effectively after 25 months. Regarding the Brier score, no significant differences were
observed between the two models from two to 60 months. Calibration plots and decision curve analyses for
one-, three-, and five-year mortality predictions are provided in Figures 10-11.
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Patients diagnosed with pancreatic cancer between Jan 1, 2010, and Dec 31, 2015
N=71359

Exclusion: Patients with unknown survival months or
patients with survival months equal to zero

Patients with survival data
N=58300

Exclusion: Patients without surgery performed or
unknown

Patients with survival data and surgery performed
N=13303

Exclusion: Patients with unknown clinical Records (CS
tumor size, Regional nodes positive, T, N, M, grade)

Patients with survival data and surgery performed and complete clinical information
N=10565

Inclusion: age range (20-80 years); N1 or M1

Metastatic cohort: N = 5998

FIGURE 9: The flow diagram of patients with metastatic pancreatic
carcinoma selection

Variables Overall N=5998 Train cohort N=4798 Test cohort N=1200 p-value
Survival months median (range) 20 (11-41) 20 (10-41) 21 (11-41) 0.93
Death status (%) 0.903
Alive 1212 (20.2) 968 (20.2) 244 (20.3)

Dead 4786 (79.8) 3830 (79.8) 956 (79.7)

Age at diagnosis meanzsd 64.0£10.0 64.0+9.9 63.9+10.2 0.956
Sex (%) 0.422
Female 2842 (47.4) 2261 (47.1) 581 (48.4)

Male 3156 (52.6) 2537 (52.9) 619 (51.6)

Race recode (%) 0.763
White 4907 (81.8) 3930 (81.9) 977 (81.4)

Black 607 (10.1) 487 (10.2) 120 (10.0)

Others 484 (8.1) 381 (7.9) 103 (8.6)

Grade (%) 0.865
Well differentiated; Grade | 935 (15.6) 744 (15.5) 191 (15.9)

Moderately differentiated; Grade I 2818 (47.0) 2263 (47.2) 555 (46.3)

Poorly differentiated; Grade |1l 2149 (35.8) 1712 (35.7) 437 (36.4)

Undifferentiated; anaplastic; Grade IV 96 (1.6) 79 (1.6) 17 (1.4)
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TABLE 4: Demographic characteristics of patients with metastatic pancreatic cancer

AJCC: American Joint Committee on Cancer
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FIGURE 10: Calibration plots of the metastatic cohort

The prediction of metastatic pancreatic cancer-specific mortality at one-year (denoted as A), three-year (denoted
as B), and five-year (denoted as C) intervals utilized Survival Quilts and Cox models.
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FIGURE 11: Decision curve analysis of the metastatic cohort

The prediction of metastatic pancreatic cancer-specific mortality at one-year (denoted as A), three-year (denoted
as B), and five-year (denoted as C) intervals utilized Survival Quilts and Cox models.

Model visualization

In the prediction view, the system invokes a prediction model, as shown in Figure 12, and the Survival Quilts
model is used to predict patients’ mortality. The analysis results are visualized in a graphic view as a
mortality curve, which indicates the mortality of the patient input overtime.
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FIGURE 12: User-friendly interface of the Survival Quilts model

Discussion

In this investigation, we utilized an extensive dataset to formulate and evaluate an innovative prognostic
model, trained through machine learning, designed for the prediction of pancreatic cancer-specific
mortality. Its performance was systematically compared against traditional Cox regression models. To the
best of our knowledge, our research represents the pioneering application of Survival Quilts for the
prediction of pancreatic cancer-specific mortality. Our findings indicate that Survival Quilts demonstrated
superior predictive accuracy compared to the Cox model for short-term mortality in postoperative pancreatic
cancer patients. However, its efficacy lagged behind the Cox model in forecasting long-term mortality. This
study introduces a pioneering approach to predicting pancreatic cancer mortality, leveraging a novel
machine learning algorithm that automatically amalgamates optimal attributes derived from diverse
modeling methods.

Pancreatic cancer, characterized by a dismal prognosis, witnessed a nearly 45% mortality rate within two
years for 4,416 out of 9,752 individuals in our cohort. Therefore, the prediction of short-term mortality in
pancreatic cancer holds more substantial clinical importance than long-term mortality. Our Survival Quilts
model exhibits significantly superior performance in predicting mortality within two years compared to the
efficiency of Cox. Subgroup analysis within the pancreatic cancer population revealed a notable advantage
of the Survival Quilts models over the Cox models among individuals without metastasis. In the metastatic
pancreatic cancer population, Survival Quilts outperformed the Cox model in short-term mortality
prediction but showed reduced efficacy in predicting long-term mortality. Within this cohort, 30% of
patients succumbed within one year (1,839/5,998) and 55% within two years (3,353/5,998), underscoring the
heightened clinical significance of short-term mortality prediction. Additionally, our Survival Quilts model
consistently demonstrated a significant advantage over the Cox model in predicting mortality within two
years. We conclude that, for forecasting the risk of pancreatic cancer mortality, Survival Quilts exhibits
superior clinical utility compared to Cox.

Several studies employing machine learning techniques for pancreatic cancer prognostics exist, though
many of them have employed small cohorts during model development. For instance, Keyl et al. [15], in a
study involving 203 pancreatic cancer patients, formulated a prognostic model utilizing a random survival
forest based on clinical indicators. They achieved a c-index of 0.71, significantly surpassing survival risk
prediction based on the AJCC system. Owing to the low incidence of pancreatic cancer [16], the limited
sample size has impeded the development of reliable machine learning models in previous research. In
contrast, our investigation, leveraging the SEER database, encompassed a substantial total of 9,752
postoperative samples of pancreatic cancer. This ample sample size created favorable conditions for the
robust development of machine learning models.

Beyond sample size considerations, the selection of an appropriate machine learning method is paramount
for constructing a dependable prognostic model. Previous studies often employed a strategy of
simultaneously applying diverse machine learning methods and selecting the most efficient algorithm as the
final model [17,18]. For instance, in a study involving a total of 1,280 pancreatic cancer samples from
multiple centers, Wang et al. [17] employed 76 different machine learning algorithms to construct models,
ultimately opting for CoxBoost and Survival Support Vector Machine as the final prognostic models. Our
study introduces a novel machine learning method, Survival Quilts, in the construction of the prognostic
model. Survival Quilts, operating as an ensemble of diverse survival models, automatically assigns weights
to these models and adjusts their parameters in a single ensemble tailored to the specific dataset. In
essence, Survival Quilts automates the process of optimal model selection.

Our machine learning model was developed through training on a sizable and diverse contemporary
population, utilizing real-world data from a robust database. As far as we know, this study represents the
most extensive application of machine learning in pancreatic cancer prognostics. Nevertheless, it is
essential to acknowledge some significant limitations in this study. First, due to the absence of comorbidity
and treatment data in the SEER database, we were unable to incorporate these crucial variables into our
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modeling. This limitation precluded our ability to assess the impact of comorbidity on outcomes and
consider the effects of treatment, factors that play pivotal roles in other predictive models. Second, SEER
does not capture information on CT or molecular markers, which are instrumental in predicting the
prognosis of pancreatic cancer [19]. Additionally, our study lacks external validation, highlighting the need
for further investigation to substantiate the benefits of employing Survival Quilts in the realm of survival
prediction.

Conclusions

We have developed and validated a novel machine learning-based Survival Quilts model to predict
pancreatic cancer-specific mortality, which outperforms the Cox regression model. A user-friendly interface
has also been built for clinical applications. The future incorporation of supplementary data is expected to
enhance the performance and accuracy of the model, providing better personalized prognostic outcomes.
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