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Abstract
Introduction

Intra-operative awareness has a reported incidence of approximately 0.1-0.8%. Anesthetic-
induced changes in the patient electrical brain activity (EEG) can be monitored in order to avoid
intra-operative awareness cases. In this work we investigate the effect of anesthetic
administration on the observed patterns of nonlinear dynamic coupling between different brain
areas.

Materials & Methods

The cross-recurrence rate (CRR) is used to characterize how anesthetic administration affects
the coupling relationships in the electroencephalogram (EEG) activity of 22 patients
undergoing surgery. Patients received either intravenous (propofol) or inhalational anesthesia
(sevoflurane, desflurane or isoflurane). CRR was then estimated over 2-s or 4-s EEG segments
and the significant coupling patterns during wakefulness and anesthesia were identified and
compared.

Results

The estimated CRR values indicate limited significant coupling of the phase-space trajectories
during wakefulness. This is in contrast to anesthesia, where a significant increase in coupling is
found. The observed increase appears to be spatially widespread and unaffected by the
particular anesthetic protocol used. These observations agree with reported evidence of a more
synchronized EEG during anesthesia.

Conclusion

The speed of estimation and the statistically significant changes observed in the CRR are
encouraging for a future application in a device for monitoring anesthesia during surgery.

Categories: Anesthesiology, Medical Physics
Keywords: eeg, electroencephalogram, nonlinear dynamics, order recurrence, anesthesia, time series
complexity

Introduction
General anesthesia is a chemically-induced reversible state of unconsciousness and depression
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of reflexes to afferent stimuli. Modern anesthesia involves the administration of different drugs
to achieve the desired components of unconsciousness, amnesia, analgesia and immobility.
Awareness during general anesthesia is considered a rare event; however, the psychological
consequences can be severe for those who experience it. The incidence of awareness ranges
from 0.1-0.8% [1] and is affected by a number of factors, such as patient characteristics and the
type of surgery [2]. Devices that monitor the depth of anesthesia are now commercially
available; such devices could provide a valuable means of identifying awareness during surgery,
particularly since the patient himself cannot communicate this to the anesthetist due to the
induced immobility. These devices function by monitoring the frontal electrical brain activity
(EEG) from 2 electrodes placed on the patient's forehead. Particular characteristics are extracted
from this recorded activity, which are then converted into a number corresponding to the level
of hypnosis (0-100; no activity – fully awake, respectively). Available monitors are based largely
on changes in the spectral content of the EEG, which are non-unique to anesthesia [3,4].

It is clear that an important issue in monitoring awareness during surgery is the particular set
of methods used to extract features from the EEG activity. This is evident from (i) the large
variations in classification accuracy or prediction probabilities used to assess the performance
of different algorithms (see, e.g., table 5 in [5]), and (ii) the disagreement between different
commercially available depth of anesthesia monitors in assessing patient state of hypnosis [6-
8]. In addition to commercially available monitors, other algorithms utilized so far for
monitoring awareness include spectrum-based methods [9-12], entropy-based methods [13-15],
and methods from non-linear dynamics and complexity [13,14,16]. Recently, the use of
recurrence methods has been introduced to study how the EEG activity is affected by the
administration of anesthetic agents during general anesthesia and results indicate that such
methods are highly promising for monitoring anesthetic depth. Recurrence methods are
advanced nonlinear techniques that study the recurrence of the phase space trajectories of a
dynamical system [17]. Two of the most popular recurrence methods are order recurrence plots,
a tool for visualizing the dynamics of the phase space trajectories of the system [17], and order
recurrence rate (ORR), an adaptation of recurrence plots that improves robustness against
amplitude distortions of the time series under consideration [18]. Recurrence methods are
advantageous over other non-linear methods used in anesthesia studies: they are suitable for
short time-series [19,20], they are robust to the presence of artifacts [18,21], they are invariant
to arbitrary transformations of the amplitude [18], and no assumptions on stationarity or
linearity are necessary [22]. In a study by Li et al. the application of recurrence methods
revealed an increase in the determinism of the frontal EEG with increasing concentrations of
sevoflurane [23]. In other studies it was also found that recurrence quantification analysis
displayed an increased ability, as measured with prediction probability, to separate
consciousness from unconsciousness under different anesthetic regimes utilizing information
from single-channel or two-channel frontal EEG [21,24].

In this work we investigate whether the application of cross-recurrence rate [21,25], a bivariate
extension of recurrence rate, yields additional information to the study of nonlinear coupling
relationships between different brain areas during anesthesia. This study was encouraged by
previous investigations, where the CRR was applied to EEG data of 10 patients during recovery
of consciousness at the end of surgery [26]. Here we utilize whole-head EEG data from the
entire duration of surgery and without imposing restrictions on the anesthetic regime in order
to characterize the evolution of the EEG complexity between different brain areas over the
entire scalp and under actual surgical conditions. The main difference with other recurrence-
based methods is that we are characterizing the evolution of the bivariate dynamical
relationships between two brain areas, as opposed to characterizing the evolution of activity in
a single brain area.

Materials And Methods
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Dataset
The dataset used in this study was collected from 22 patients of age 45.7±21.3 (1 female patient)
undergoing routine general surgery at Nicosia General Hospital, Cyprus. The study was
approved by the National Bioethics Committee of Cyprus and patients gave written informed
consent for their participation. A detailed description of the dataset is provided in previous
work (see, e.g. [5]). In summary, anesthesia was induced by the on duty anesthetist with a
propofol bolus and was maintained either (i) with an intravenous administration of propofol

(17 patients) at concentrations ranging between 20-50 ml h-1 (200-500 mg h-1) depending on
patient characteristics and surgery requirements, or (ii) with a continuous inhalational
administration of sevoflurane (3 patients), desflurane (1 patient), or isoflurane (1 patient). In
most patients remifentanil hydrochloride (Ultiva®; 2 mg, dissolved in 40 ml) was also

administered intravenously throughout surgery at a rate ranging between 2-15 ml h-1 (0.1-0.75

mg h-1). Patient lungs were ventilated with an air-oxygen or air-oxygen-N2O mixture. Some

patients were also given boluses of neuromuscular blocking agents (tracrium, vecuronium or
sisatracurium). The particular drugs administered (propofol and potent inhaled
anesthetics) follow the basic anesthetic-induced EEG pattern, i.e. changes in both frequency
and amplitude (amplitude increase and frequency slowing), with the possibility of burst
suppression in high doses.

EEG data were collected with the TruScan32 system (Deymed Diagnostic) and 19 electrodes
were placed according to the International 10/20 system: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz,
C4, T4, T5, P3, Pz, P4, T6, O1 and O2, with an FCz electrode reference. The sampling rate was
256 Hz and the data were analog low-pass filtered with cutoff at 100 Hz; thus, the sampling
frequency of 256 Hz was more than adequate to ensure fulfillment of the Nyquist frequency
consideration. No additional filtering was performed during or after data collection.

Data recording usually commenced while patients were still awake prior to anesthetic
induction, continued throughout the entire surgery and until patients regained consciousness
at the end of surgery. Manual markers were inserted in the EEG records indicating important
events, such as anesthetic induction, recovery of consciousness and start/end of anesthetic
administration. These markers are important in subsequent identification of EEG windows
corresponding to wakefulness and anesthesia. The point at which the patient began responding
to verbal commands or tactile stimuli by the anesthetist at the end of surgery was defined as
recovery of consciousness. This was not influenced by neuromuscular blocking agent
administration as an antagonist was administered to cancel the neuromuscular blocking
effects, if necessary, once anesthetic administration was discontinued. Depending on patient
characteristics loss of consciousness occurred approximately 10-30 seconds after anesthetic
induction; this was assessed by the anesthetist on duty either as a loss of eyelash reflex, lack of
response to light tapping of the patient's forehead just above the nose between the eyes, or a
lack of patient response to a verbal command.

Estimation of cross-recurrence rate
The first step in estimating the CRR is to represent the dynamics of the system as a symbolic
sequence and to encode them as order patterns. The main advantage of a conversion to a
symbolic sequence is that the order patterns remain invariant under strict monotonic amplitude
transformations [18]. Considering a one-dimensional EEG time series at a given electrode, 

, a phase-space representation of the EEG
time series can be constructed by time delay embedding, with an embedding dimension m and
embedding delay τed [27]:
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 (1)

The process of time delay embedding with embedding dimension m effectively provides a
phase-space representation of the system, without changing the underlying system dynamics.
Each m-dimensional segment is ordered in terms of rank. For example, for m=3, an embedded
segment with values [3, 6, 2] would correspond to the rank vector [1, 2, 0]. This sequence of
ranks is the order pattern, , of the embedded segment. In general, there are m!

possible ways (order patterns) , in which a sequence of m values can be
ordered. The recurrence matrix, , identifies a match between the order
patterns of two embedded EEG signals,  and , separated by a delay, \tau_{ord}
(order recurrence delay):

 (2)

where 

The cross recurrence rate, , is a bivariate measure
representing the frequency of order pattern recurrences. CRR is estimated as:

 (3)

The factor  is a normalizing factor such that . The

CRR allows us to study the recurrent dynamics between different systems by estimating how
many times a particular state occurs simultaneously in  and  [28]. This
is very useful for the analysis of delayed interacting systems or systems with feedback [20].

The choice of the parameters m and  is important and methods for estimating them should
be used [29]. We chose here  (4 ms) and  (see Discussion for more details). 

Cross-recurrence rate flow
The non-symmetric nature of the CRR measure allows us to identify the direction of the
temporal evolution of the non-linear bivariate relationships. In this context, we interpreted 

 as EEG signal 
 leading EEG signal  (and vice versa). Thus, we can investigate whether a given

electrode, , is in general a leader (eq. 4) or a follower (eq. 5), by comparing the CRR values
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obtained when the specific electrode leads or lags other electrodes respectively.

(4)

 (5)

where Ne is the number of available electrodes for a particular patient. These two quantities

allow us to characterize whether: (i) the activity from electrode  leads 
 or lags  activity generated at

electrode ; and (ii) whether a particular electrode  is in general a 'leader' 
 or a 'follower' . 

This information can also be used to obtain an overall picture of which brain areas (defined by
the corresponding electrodes) act as 'leaders' or 'followers' during wakefulness and anesthesia.
This is obtained by counting, for each patient, the number of windows, N, that displayed either
higher lead or lag activity during wakefulness and anesthesia at each electrode, . If 

, then electrode  is identified as a general 'leader';

otherwise, if , then electrode  is identified as a

'follower'.

Data analysis
The EEG data from each patient were analyzed using a moving and non-overlapping window.
Windows corresponding to wakefulness and anesthesia were defined based on the markers
inserted in the continuous EEG records during data recording: anesthesia is the activity
contained within the markers for 'induction' and 'recovery of consciousness'. Given that
recovery of consciousness is an abrupt state change [39], it is reasonable to say that the
remaining activity corresponds to wakefulness. Window sizes of 2-s and 4-s were investigated.
For each patient and each EEG window pairwise CRR estimates between all available electrodes
were obtained. Electrodes with no signal resulting from bad contact were excluded from CRR
estimations. The maximum number of CRR values was obtained if all 19 electrodes were
available, in which case taking into account also the directionality of CRR, i.e. CRR(e_i,e_j)
\neq CRR(e_j,e_i), then 342 CRR values would be estimated (19 electrodes x 18 pairwise
combinations). 

Statistical analysis
Two tests for statistical significance were applied. Firstly, the method of phase randomized
surrogate data was used to assess the statistical significance of each estimated CRR value [30].
The surrogate data has the same spectral properties as the original data, but (nonlinear) phase
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relationships are destroyed. This is important as it is clear from the CRR formulation that the
CRR can also be related to the phase of the time series. The number of surrogate signals needed
for a given significance level is a function of the probability of false rejection, , and
can be estimated as  [31]. We now have  datasets a total, including both
the surrogates and the original dataset. The probability that the original data has the largest
CRR of this dataset merely by coincidence is exactly . Hence, if the estimated CRR exceeds the
maximum surrogate CRR, we can accept the hypothesis that the estimated CRR is significant at
a significance level . In this work 19 surrogate signal pairs (i.e. )
were generated for each electrode signal.

Secondly, the effects of condition (wakefulness vs anesthesia), recording location and type of
anesthesia (intravenous vs inhalational) on the mean CRR values were assessed. To test for
these effects over all patients a 3-way analysis of variance (ANOVA F-test, ) was
performed (command 'anovan' in Matlab). The mean CRR values used in the ANOVA tests were
obtained from all CRR values, without excluding those that were found to be non-significant
from the surrogate method.

Results
Figure 1 shows the topography of the patient-wise average lead CRR flow during wakefulness
and anesthesia (the lag CRR flow is simply the reverse). The scalp maps were obtained using the
function 'topoplot' (part of the EEGLAB toolbox [32]). To obtain a smooth topography 'topoplot'
uses interpolation for areas in between the available electrodes. The topographies were
obtained by considering only the significant CRR values, i.e. the CRR values that exceeded the
maximum surrogate CRR value at each time window. To obtain smooth topographies, Figure 1
shows the overall picture of which brain areas (defined by the corresponding electrodes) act as
'leaders' or 'followers' during wakefulness and anesthesia (as described in the section 'CRR
Flow'). Thus, Figure 1 provides a broad (patient-wise average) picture of the general role of
each electrode as a 'leader' or 'follower'.

Figures 2-4 show examples of the lead and lag CRR values at electrode Cz (estimated from eqs.
(4) and (5)) for patients S6, S2 and S5 respectively. As described in the previous section, the
depicted CRR values at each electrode represent the sum (hence, values can be > 1) of incoming
or outgoing CRR between the particular electrode and all other electrodes. Sharp increases in
both lead and lag CRR correlate with wakefulness-anesthesia transitions and not with
discontinuation of anesthetic administration. For visualization purposes, the estimated CRR
values were smoothed with a moving average filter . Tables 1, 2 show the median
CRR values (estimated over all electrodes) for each patient individually, for outgoing and
incoming CRR respectively. The median is presented instead of the mean, as the median does
not take into account outlier values in its estimation. The increase of CRR values during
anesthesia compared to wakefulness is observed for all patients studied, except for patient S1
(we have not yet been able to identify any particular characteristics of this patient that can
explain this behaviour). 
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FIGURE 1: Patient-wise mean tendency of CRR ‘outflow’ during
(a) wakefulness and (b) anesthesia (‘inflow’ activity is simply
the reverse).
Higher CRR values indicate larger similarities. During wakefulness the 'outflow' of activity is
more spatially focused over centro-posterior areas, suggesting that flow of information initiates
in posterior areas. Administration of anesthesia causes a more spatially widespread 'outflow' of
activity, with the exception of central areas, which become the main recipient of this
widespread activity. Values are interpolated over the entire scalp to obtain a smooth
topography.

FIGURE 2: Lead and lag CRR activity at electrode Cz for patient
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S6, estimated using non-overlapping EEG windows of 2
seconds duration.
Anesthesia was induced and maintained with propofol. Vertical lines indicate anesthetic
induction (LOC), recovery of consciousness (ROC) and termination of anesthetic maintenance
(AN OFF). The use of diathermy equipment causes large outlier values.

FIGURE 3: Lead and lag CRR activity at electrode Cz for patient
S2, estimated using non-overlapping EEG windows of 2
seconds duration.
Anesthesia was induced and maintained with propofol. Vertical lines indicate anesthetic
induction (LOC), recovery of consciousness (ROC) and termination of anesthetic maintenance
(AN OFF). Tracheal intubation and the use of diathermy equipment cause large outlier values.
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Patient Wakefulness ± STD Anesthesia ± STD

S1 0.510 ± 0.019 0.366 ± 0.037

S2 0.243 ± 0.029 0.395 ± 0.067

S3 0.183 ± 0.014 0.347 ± 0.036

S4 0.204 ± 0.012 0.498 ± 0.072

S5 0.242 ± 0.034 0.327 ± 0.032

S6 0.282 ± 0.027 0.305 ± 0.037

S7 0.215 ± 0.013 0.467 ± 0.082

S8 0.203 ± 0.006 0.401 ± 0.049

S9 0.245 ± 0.031 0.385 ± 0.054

S10 0.247 ± 0.027 0.304 ± 0.044

S11 0.236 ± 0.017 0.570 ± 0.083

S12 0.254 ± 0.021 0.406 ± 0.054

S13 0.292 ± 0.026 0.493 ± 0.074

S14 0.284 ± 0.026 0.384 ± 0.046

S15 0.143 ± 0.017 0.155 ± 0.065

S16 0.239 ± 0.024 0.464 ± 0.065

S17 0.178 ± 0.006 0.375 ± 0.046

S18 0.238 ± 0.029 0.296 ± 0.046

S19 0.231 ± 0.024 0.462 ± 0.082

S20 0.356 ± 0.039 0.426 ± 0.062

S21 0.216 ± 0.018 0.414 ± 0.041

S22 0.130 ± 0.053 0.164 ± 0.057

TABLE 1: Median outgoing CRR for all electrodes for each patient studied during
wakefulness and anesthesia (median CRR and standard deviation).
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Patient Wakefulness ± STD Anesthesia  ± STD

S1 0.513 ± 0.019 0.367 ± 0.036

S2 0.235 ± 0.025 0.394 ± 0.058

S3 0.182 ± 0.007 0.374 ± 0.069

S4 0.199 ± 0.010 0.504 ± 0.067

S5 0.234 ± 0.011 0.324 ± 0.030

S6 0.279 ± 0.014 0.331 ± 0.051

S7 0.217 ± 0.012 0.471 ± 0.068

S8 0.201 ± 0.006 0.400 ± 0.051

S9 0.242 ± 0.028 0.385 ± 0.048

S10 0.251 ± 0.027 0.302 ± 0.046

S11 0.242 ± 0.021 0.568 ± 0.076

S12 0.254 ± 0.018 0.391 ± 0.047

S13 0.287 ± 0.014 0.491 ± 0.063

S14 0.285 ± 0.019 0.385 ± 0.057

S15 0.148 ± 0.016 0.160 ± 0.067

S16 0.232 ± 0.024 0.469 ± 0.062

S17 0.179 ± 0.003 0.375 ± 0.042

S18 0.231 ± 0.025 0.315 ± 0.046

S19 0.235 ± 0.021 0.470 ± 0.074

S20 0.362 ± 0.033 0.416 ± 0.053

S21 0.216 ± 0.011 0.418 ± 0.048

S22 0.141 ± 0.029 0.176 ± 0.032

TABLE 2: Median incoming CRR over all electrodes for each patient studied during
wakefulness and anesthesia (median CRR and standard deviation).

Figures 5-7 show the corresponding scalp topographies of the average lead and lag CRR values
(top and bottom rows respectively), averaged over all EEG windows that correspond to
wakefulness or anesthesia (left and right columns respectively), for patients S1, S2 and S4
respectively. In contrast to Figure 1, which represents the overall patient-wise tendency of
particular brain areas (electrodes) to act as leaders or followers, Figures 5-7 show individual

2014 Nicolaou et al. Cureus 6(8): e195. DOI 10.7759/cureus.195 10 of 19



patient lead and lag CRR values (top and bottom rows respectively) at each EEG electrode,
averaged over all EEG windows that correspond to either wakefulness or anesthesia (left and
right columns respectively) for the particular patient. Due to the inter-subject variability of the
CRR values for individual patients different scales are used in plotting each figure. However,
the patterns observed are the same, regardless of the actual CRR values. A video showing the
estimated CRR topographies for the entire EEG record of patient S1 can be provided per
request. In addition, the CRR patterns are not affected by the window size (2 or 4 seconds). 

FIGURE 4: Lead and lag CRR activity at electrode Cz for patient
S5, estimated using non-overlapping EEG windows of 2
seconds duration.
Anesthesia was induced and maintained with propofol. Vertical lines indicate anesthetic
induction (LOC), recovery of consciousness (ROC) and termination of anesthetic maintenance
(AN OFF). Tracheal intubation and the use of diathermy equipment cause large outlier values.
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FIGURE 5: Average scalp topographies of significant CRR for
patient S1.
Top row (plots (a)-(b)): lead activity. Bottom row (plots (c)-(d)): lag activity. Left column (plots (a)
& (c)): wakefulness. Right column (plots (b) and (d)): anesthesia. Anesthesia was induced and
maintained with propofol. CRR values estimated using non-overlapping windows of 4 seconds
duration. Values are interpolated over the entire scalp to obtain a smooth topography.
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FIGURE 6: Average scalp topographies of significant CRR for
patient S2.
Top row (plots (a)-(b)): lead activity. Bottom row (plots (c)-(d)): lag activity. Left column (plots (a)
& (c)): wakefulness. Right column (plots (b) and (d)): anesthesia. Anesthesia was induced and
maintained with propofol. CRR values estimated using non-overlapping windows of 2 seconds
duration. Values are interpolated over the entire scalp to obtain a smooth topography.
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FIGURE 7: Average scalp topographies of significant CRR for
patient S4 (female).
Top row (plots (a)-(b)): lead activity. Bottom row (plots (c)-(d)): lag activity. Left column (plots (a)
& (c)): wakefulness. Right column (plots (b) and (d)): anesthesia. Anesthesia was induced with a
propofol bolus and maintained with desflurane. CRR values estimated using non-overlapping
windows of 2 seconds duration. Values are interpolated over the entire scalp to obtain a smooth
topography.

The 3-way ANOVA test (F-test, ) showed significant effects on the CRR values. It was found that
condition, recording location and anesthetic type had a significant effect on the CRR values.
The mean CRR during anesthesia was significantly different from the mean CRR during
wakefulness (lag CRR: F=384.8, p=0; lead CRR: F=374.4, p=0). In addition, a significant effect of
recording location on the mean CRR values during wakefulness (lag CRR: F=51.8, p=0; lead
CRR: F=50.0, p=0) and a significant effect of anesthetic type on the mean CRR values during
anesthesia (lag CRR: F=5.2, p=0; lead CRR: F=5.11, p=0) were identified. The particular effects
of these factors can be summarized as follows: (a) maintenance with propofol resulted in lower
mean CRR values during wakefulness compared to maintenance with inhalational agents (mean
lag CRR of 0.22 vs 0.29 respectively; values were identical for mean lead CRR); and (b) more
posterior locations displayed larger mean CRR values than those at fronto-central locations
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(Figure 8 – showing mean lag CRR values; these were identical for mean lead CRR). 

FIGURE 8: Spatial distribution of patient-wise mean CRR (over
all patients studied) during anesthesia and wakefulness at
each electrode location.
The general increase in CRR values during anesthesia is more prominent at posterior locations.

Discussion
The most significant observation is that administration of anesthesia induces a spatially
widespread increase in the CRR. This is independent of individual patient characteristics and of
the particular anesthetic protocol followed. Even though the anesthetic protocol does not affect
the observed CRR patterns, it does have a significant effect on the CRR values during
wakefulness. The lower mean CRR values during wakefulness after propofol maintenance
compared to maintenance with isoflurane and sevoflurane suggest that inhalational agents
may have a larger suppressive effect on the observed EEG activity. In addition, frontal and
centro-frontal areas display significantly smaller CRR values compared to other brain areas;
however, the amount of lead and lag activity from these areas is at a similar level. During
wakefulness we can also identify larger lead activity from posterior areas compared to all other
areas (Figure 1), which represents the tendency of these areas to act as initiators of the
observed activity.

Administration of anesthesia induces more spatially widespread nonlinear coupling
relationships by entraining more areas into a synchronized activity, resulting in a more
spatially widespread activity flow and the disruption of the 'leader' relationship identified
during wakefulness. This is with the exception of fronto-central areas (F3, Fz, F4), which
remain as 'followers'. This occurs consistently across all patients studied, although a
considerable inter-subject variability in the actual CRR values was found. Considering the
patient-wise average CRR for wakefulness and anesthesia (Figure 1) some important
implications can be suggested. During wakefulness there is a bigger tendency for centro-
posterior areas to display larger lead activity, thus these areas can be considered as 'leaders'.

These observations can be related to other work where it is suggested that EEG is more
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irregular during wakefulness and becomes more predictable during anesthetic-induced
unconsciousness, thus leading to a decrease of the EEG complexity. This is reflected in the low
CRR values during wakefulness implying that there is no significant coupling of the phase-
space trajectories. Administration of anesthesia induces strong bidirectional coupling of the
phase-space dynamics, which is identified as a significant increase in the CRR values. In
addition, parietal and frontal areas display higher lead and lag CRR values compared to anterior
central areas. This weaker relationship of the EEG dynamics could reflect some form of a
decoupling between anterior central and other areas. As seen from Figures 2-7, as well as from
the supplementary figures SF1-SF3 and the supplementary video SV1, the observed patterns are
similar regardless of individual patient characteristics and of the particular anesthetic regime
followed. Evidence from recent imaging studies with isoflurane and halothane [33], sevoflurane
[34], midazolam [35] and propofol [36] indicate a functional disconnection of the cortex from
outside sensory experience. The disruption of sensory information flow to the cortex implies
that no external input can reach the cortex resulting in a hypersynchrony of neuronal activity
as the unstimulated brain areas begin to oscillate together. Consequently, different brain
regions of the cortex oscillate together resembling coupled oscillators. The effects of this are
reflected as an increase in the CRR values as observed in the broader context of the non-
invasive EEG.

It is very likely that the observed changes are not a mere reflection of the concentration of the
anesthetic agent in the body. This is supported by considering that the administration of
anesthetics was switched off some minutes prior to recovery of consciousness. Should the
estimated CRR values have been a reflection of the metabolic decrease of the anesthetic agent,
a gradual decrease in the CRR values would have been observed rather than the sharp decrease
observed here. In addition, it is known that surgical noxious stimuli tends to lighten the level of
hypnosis [37]. Even though recurrence methods are robust to artifacts, it is likely that some
outlier CRR values are also present given that no artifact removal has been performed.
However, despite these outlier values the observed CRR patterns remain stable from the onset
of loss of consciousness to its recovery at the end of surgery and are neither affected by, nor are
a direct result of, the surgery itself.

The robustness and stability of the CRR patterns is important for the clinical utility of the
proposed methodology. Despite the inter-subject variability in the actual CRR values, the
observed patterns are similar for all patients. In a clinical setting, a patient-specific baseline
CRR during wakefulness can be obtained prior to administration of the anesthetic bolus. Bolus
administration will cause the CRR values to increase above this baseline level, where they will
remain stable provided the patient is anesthetized. This is observed for 21 of the 22 patients
studied (Tables 1, 2). The anesthetist can then monitor the CRR values and ensure that these do
not return to the patient baseline level during surgery. Therefore, the known
consciousness/unconsciousness states of the patient prior and immediately after anesthetic
bolus administration allow system calibration for each patient. Thus, the proposed method is
generalized, as the CRR patterns are similar for all patients, while at the same time individual
variability in the CRR values is taken into consideration. This is an important advantage over
existing monitoring methods that do not take into account inter-subject variability and employ
a universal scale from 0 to 100. In addition, the robustness of the CRR patterns over all
recording locations studied allows the use of a smaller number of electrodes without affecting
performance. 

The choice of the particular values of  and  was based on previous findings.
Jordan et al. state that the ability to separate the two states decreases for order recurrence
delays  [21]. We also found a similar effect from our previous investigations during
recovery of consciousness using the CRR [26], where we concluded that: (i) a value of 

 provided the best discriminating ability between wakefulness and anesthesia; and
(ii) the choice of m affects the estimated CRR values, but not the observed CRR patterns. Thus,
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based on our previous investigations, and given that large values of m constitute the
estimations very computationally complex, we chose here  and  (a value of 

 is also recommended in [18]).

As a final remark, the CRR patterns were estimated using a reference electrode montage
(reference location at FCz). Even though the particular choice of reference may have some
effects on the estimated activity, an "ideal" reference should effectively be placed far away from
the underlying source generator. However, no such distant point is generally available in EEG
recordings; thus, there is essentially no difference between recording and reference electrodes.
Other popular montages include (i) the linked-ears reference, which is commonly used despite
the minimal theoretical basis supporting this approach, (ii) bipolar recordings, which is useful
for improving the spatial resolution of the EEG, and (iii) average reference, which is most likely
a poor choice for use with the standard 10/20 system (for an extensive discussion of the various
montages and their advantages/disadvantages see [38]).

Conclusions
We investigated the nonlinear bidirectional interactions during wakefulness and anesthesia and
identified a spatially widespread increase of interactions during anesthesia that is likely a
result of an increase in synchronization. The study has important implications when
considering the feasibility of cross-recurrence methods in identifying between anesthesia and
wakefulness. In a previous study CRR displayed an increased ability (98%) to separate
wakefulness and anesthesia [26]. Taking this into consideration and also considering the speed
of estimation and the statistically significant changes observed in the CRR the future
application of CRR in a device for monitoring anesthesia during surgery is encouraged.
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