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Abstract
Background and Purpose: Contouring variability remains a major source of uncertainty in
radiotherapy treatment planning. The objective of this study was to identify the effect of
contouring variability on dose-volume histogram (DVH) metrics used for treatment plan
optimization of prostate IMRT.

Methods: A total of 25 observers were recruited to delineate the bladder, prostate, and rectum
in a CT scan of low-risk prostate cancer. Dice similarity coefficients (DSC) were calculated
between observer and an algorithmically-generated consensus contour. The observer contours
were used to generate treatment plans and calculate DVH for each organ. The variance between
DVH curves was calculated for the values D95% for prostate, and V65, 70, 75 Gy for bladder and

rectum.

Results: DSC for the bladder, prostate, and rectum were 0.971 ± 0.007, 0.838 ± 0.067, 0.771 ±
0.124, respectively. DVH variance for all three structures was primarily driven by differences in
prostate contouring.  Variations in rectal contouring had important additional impacts only on
rectal DVH.  Bladder contouring variation had little impact on DVH metrics.

Conclusions: Although the rectum was the most inconsistently contoured structure, its
variability did not impact DVH as much as prostate variability. It has been demonstrated that
the dosimetric impact of contouring variability cannot be predicted solely with DSC.

Categories: Medical Physics, Radiation Oncology
Keywords: radiation treatment planning, contouring variability, dosimetric, dvh evaluation,
contouring, prostate cancer

Introduction
Modern radiation therapy delivers highly conformal dose distributions. With improving
technological capability, an increased need for accurate delineation of the planning target
volumes (PTV) and organs at risk (OAR) is required. Inter-clinician variability during
contouring remains a substantial source of uncertainty. Contouring variability has therefore
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become a focus of research, with emphasis on both PTV and OARs for many anatomical sites [1-
4].  The impact of contour variability on dose-volume histogram (DVH) parameters used in
treatment plan optimization has been less well-characterized.

DVH summarizes dose distribution across an entire organ or target volume of interest and is
sensitive to variations in contouring. Previous work has identified DVH differences due to
contouring variation in breast, oropharyngeal and prostate cancer [5-7], but these studies did
not examine the independent contribution of contouring variability of individual structures to
DVH variations. For example, it remains unclear how contouring variability, specifically of the
bladder, affects the DVH of the prostate. The dose optimization algorithm seeks to deposit as
much dose in the PTV, while minimizing dose deposition in OARs delineated. The interplay of
PTV and OAR contours therefore requires consideration because treatment plan optimization is
driven collectively by the competing parameters of dose to target and normal tissue toxicity.

We examined the effect of individual and combined contouring variability on OAR and PTV
DVH for a low-risk prostate cancer case contoured by multiple observers.  In doing so, we
sought to isolate the effects of variability in contouring individual and grouped structures on
the DVH for all the structures of interest and potentially identify sources where efforts to
reduce variability in contouring may have the largest impact on plan optimization results as
characterized by deviations in key DVH parameters.

Materials And Methods
Contouring collection and comparison of similarity
An online contouring challenge of the prostate, bladder, and rectum was completed on an
anonymized low-risk prostate cancer abdominal-pelvic CT data set (120 kVP, 512x512

pixels/slice, 3-mm slice thickness) DICOM-RT structure files containing 25 unique contours of
prostate, bladder, and rectum were obtained using a multi-institutional online program
(www.contouringchallenge.com). In agreeing to participate in the challenge, observers
provided the requested contours and consented to the use of the contours for research analysis.

To compare the contours for individual observers, a "gold standard" contour is required (Figure
1). For this study, the gold standards used were consensus contours created for each of the
three structures using the Simultaneous Truth and Performance Level Estimation (STAPLE)
algorithm [8] that estimates the true volume of a structure from a collection of observer
contours.
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FIGURE 1: “Gold standard” contour

The 25 observer contours (prostate, rectum, bladder) were each compared against the
corresponding consensus contour with StructSure software (StructSure TM, Standard Imaging
Inc., Middletown, WI, USA). StructSure imports DICOM-RT structure files and performs
measurements of similarity between a structure file identified as the "gold standard" and a
comparison "test" structure file. For this study, we used the Dice similarity coefficient (DSC) [9]
to compare observer contours against the consensus contour obtained by the STAPLE
algorithm.

Creation of contour series isolating variability in a single
structure
Differences in the DSC do not necessarily reflect potential differences in treatment planning
dose effects.   An objective of this study was to determine the individual contribution of
prostate, bladder, and rectum contouring variability to the DVH deviations of these three
contours superimposed on the consensus dose distribution. For this purpose, we have designed
four contour series for investigation, corresponding the variation of a different structure's
contour. The first contour series includes the 25 contour sets of all observers (Vary All). The
second series was created by importing only the 25 observer contours for the prostate combined
with the STAPLE contours of the bladder and rectum (Vary Prostate Only). The third and fourth
series were created by importing the observer contours for bladder (Vary Bladder Only) and for
rectum (Vary Rectum Only) combined with STAPLE contours of the remaining two organs.
These contour series were investigated with the treatment plan optimization protocol as
outlined below.

Treatment plan optimization and DVH curves
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The contour series were used in a treatment plan optimization protocol. To avoid bias, an
automated class solution was applied to all contour sets in the four contour series described
above using the scripting and plug-in utilities in Pinnacle software (version 8.1y). The IMRT
plan was designed to use five fields of 18 MV x-rays targeting a PTV (GTV, plus a uniform
margin of 10 mm except 7 mm posteriorly) with 76 Gy to the normalization point (isocentre),
and a consistent set of objectives and weights. Using this solution, an optimized reference plan
containing the STAPLE gold standard contours was generated and approved by two radiation
oncologists, guided by RTOG-0415 standards (Radiation Therapy Oncology Group -
www.rtog.com).

Using the same class solution developed for the reference plan based on STAPLE consensus
contours, another set of treatment plans was generated for each test contour series. The
resulting dose distributions were superimposed onto the STAPLE consensus contours to
determine the dose that would have resulted in the "true" structures. To be clear, the dose
distributions were optimized using test contours, but the dose-volume analysis was based on
the "gold standard" consensus contour set. Potential geographic misses of the "true" target or
dose spillage into normal structures were thus assayed. The DVH data for these standard
structures subjected to test dose exposure were exported for analysis of variance.

Statistical analysis
For prostate, the variance (σ 2) of DVH curves between the 25 observers was characterized at the
95% dose level (D95%). Thus, the % volume was kept fixed, and the variance in Gy of the 25

observer DVH curves was measured (a horizontal line sampling the DVH curves). The curves
were a priori sampled from D92.5% to D97.5% at increments of 0.2 %, resulting in 25

measurements of σ2 from which the mean and standard deviation of σ 2 was calculated for the

region D95 + 2.5%. For rectum and bladder, the dose is kept fixed, and σ 2 of the % volume

between the 25 observer DVH curves was calculated (vertical line sampling). For rectum and

bladder, σ2 was a priori characterized at three different regions of the curve: V65 + 2.5 Gy, V70 +

2.5 Gy, V75 + 2.5 Gy sampling at increments of 0.2 Gy.

To test for differences in variance (in volume or in dose depending on which structures were
varied), the Paired T-test was used, comparing the following DVH pairings: All vs. Prostate
Only, All vs. Bladder Only, All vs. Rectum Only. All statistical analysis was performed using SAS
software (version 9.2), using two-sided statistical testing at the 5% significance level.

Results
Figure 2 shows a representative central slice of the CT study with all observer contours
superimposed. The mean and standard deviation of DSC for observer contours compared to the
respective STAPLE gold standard contours were 0.971 ± 0.007 (bladder), 0.838 ± 0.067 (prostate)
and 0.771 ± 0.124 (rectum). Figures 3A-3D illustrates the superimposed DVHs of treatment
plans when varying all contours (A), as well as when varying the contours of prostate, bladder,
and rectum individually (B-D). From this figure, qualitatively there is relatively high dispersion
of DVH curves for all three structures when all contours are varied or the prostate contour only
is varied. Dispersion in the DVH curves of the rectum also occurs when the rectum contours are
varied. Little to no dispersion occurs when bladder contours are varied.  Tables 1-3
quantitatively summarize the variance statistics of the relevant bladder (Table 1), rectum
(Table 2), and prostate (Table 3) DVH ranges.
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FIGURE 2: A representative central slice of the CT study with
all observer contours superimposed

FIGURE 3: An illustration of the superimposed DVHs of
treatment plans when varying all contours (A), as well as when
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varying the contours of prostate, bladder, and rectum
individually (B-D).

Structures Varied in Contour Series: % Volume Variance at Selected Dose Ranges of Interest (mean ± SD):

 65 ± 2.5 Gy 70 ± 2.5 Gy 75 ± 2.5 Gy

Vary all 5.00 ± 0.31 3.82 ± 0.29 2.13 ± 0.98

Vary prostate 4.92 ± 0.26 3.96 ± 0.30 2.17 ± 0.95

Vary bladder 0.01 ± 0.01 0.02 ± 0.01 0.07 ± 0.06

Vary rectum 0.03 ± 0.01 0.07 ± 0.01 0.23 ± 0.14

Contour Series Compared Using Paired
T-Test: Difference in Mean Dose (Gy) Mean (95% CI) p-Value

 65 ± 2.5 Gy 70 ± 2.5 Gy 75 ± 2.5 Gy

All vs prostate 0.075 (0.052, 0.098) <
0.001

-0.145 (-0.184, -0.105) <
0.001

-0.037 (-0.083, 0.009)
0.114

All vs bladder 4.989 (4.858, 5.119) <
0.001

3.801 (3.683, 3.920) <
0.001

2.057 (1.636, 2.477) <
0.001

All vs rectum 4.966 (4.833, 5.098) <
0.001

3.752 (3.628, 3.877) <
0.001

1.899 (1.442, 2.357) <
0.001

TABLE 1: Summary of variance
Summary of variance in BLADDER volume for contour series with all contours varied (Vary All), Prostate varied only (Vary
Prostate), Bladder varied only (Vary Bladder), and rectum varied only (Vary Rectum) at dose ranges of interest: V65 ± 2.5 Gy. V70 ±
2.5 Gy. V75 ± 2.5 Gy. Paired t-tests between "Vary All" series vs "Vary Prostate", "Vary Bladder", and "Vary Rectum".

2013 Barghi et al. Cureus 5(11): e144. DOI 10.7759/cureus.144 6 of 10



Structures Varied in Contour Series: % Volume Variance at Selected Dose Ranges of Interest (mean ± SD):

 V65 ± 2.5 Gy V70 ± 2.5 Gy V75 ± 2.5 Gy

Vary all 11.25 ± 0.55 8.94 ± 0.94 3.17 ± 2.46

Vary prostate 5.17 ± 0.63 2.57 ± 0.87 0.47 ± 0.30

Vary bladder 0.05 ± 0.01 0.04 ± 0.00 0.16 ± 0.17

Vary rectum 11.09 ± 0.34 9.22 ± 1.05 2.86 ± 2.34

Contour Series Compared Using Paired
T-Test: Difference in Mean Dose (Gy) Mean (95% CI) p-Value

 V65 ± 2.5 Gy V70 ± 2.5 Gy V75 ± 2.5 Gy

All vs prostate 6.077 (6.026, 6.128) <
0.001

6.370 (6.326, 6.414) <
0.001

2.704 (1.801, 3.607) <
0.001

All vs bladder 11.21 (10.98, 11.43) <
0.001

8.897 (8.510, 9.285) <
0.001

3.014 (1.967, 4.060) <
0.001

All vs rectum 0.158 (0.051, 0.266)
0.006

-0.277 (-0.339, -0.216) <
0.001

0.311 (0.198, 0.424) <
0.001

TABLE 2: Summary of variance
Summary of variance in RECTUM volume for contour series with all contours varied (Vary All), Prostate varied only (Vary Prostate),
Bladder varied only (Vary Bladder), and rectum varied only (Vary Rectum) at dose ranges of interest: V65 ± 2.5 Gy. V70 ± 2.5 Gy.
V75 ± 2.5 Gy. Paired t-tests between "Vary All" series vs "Vary Prostate", "Vary Bladder", and "Vary Rectum".
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Structures Varied in Contour Series: Dose Variance (Gy) at D95 ± 2.5 % Mean ± SD

Vary all 9.47 ± 12.43

Vary prostate 11.89 ± 17.59

Vary bladder 0.00 ± 0.00

Vary rectum 0.04 ± 0.10

Contour Series Compared Using Paired T-Test: Difference in mean dose (Gy) Mean (95% CI) p-Value

All vs prostate -2.421 (-9.111, 4.270) 0.462

All vs bladder 9.474 (4.227, 14.721) 0.001

All vs rectum 9.437 (4.195, 14.679) 0.001

TABLE 3: Summary of variance
Summary of variance in PROSTATE dose of contour series with all contours varied (Vary All), Prostate varied only (Vary Prostate),
Bladder varied only (Vary Bladder), and rectum varied only (Vary Rectum) at volume range of interest: D95 ± 2.5 %. Paired t-tests
between "Vary All" series vs "Vary Prostate", "Vary Bladder", and "Vary Rectum".

Collectively, both the qualitative and quantitative DVH analyses demonstrate that the variance
in prostate DVH is primarily driven from differences in prostate contouring and that
differences in rectum and bladder contouring have less impact on prostate metrics variations. 
Observed rectal DVH variation is primarily driven by differences in rectal contouring as well as
prostate contouring, whereas bladder contouring variation did not have a similar impact.  In
terms of the bladder DVH variation, the differences in the contouring of the prostate (and not
the bladder itself) were primarily responsible. The 95% confidence intervals mostly show
statistically significant differences in DVH variance between the DVHs of the 'vary all' series
compared to the 'vary bladder only', 'vary rectum only', and 'vary prostate only' series. Two
comparisons did not show statistical significance: the bladder DVH variance and the prostate
DVH variance comparisons of the "vary all" to the "vary prostate only" DVH series. This
demonstrates that varying all contours together as a group did not significantly change the
DVH variance of prostate or bladder DVH when compared to varying only the prostate contour.

Discussion
The DSC metric is commonly used in studies of contouring variability [10]. In this study, DSC
demonstrated the highest compliance value for bladder (0.971), followed by prostate (0.838),
and then rectum ( 0.771) There are several possible reasons for the high similarity among
bladder contours compared to other contours. Firstly, the bladder is the largest structure of the
three, meaning that variability itself must be larger to influence DSC significantly.
Furthermore, the bladder has a relatively well-defined border observed in CT imaging,
facilitating delineation. In comparison, the rectum is generally smaller with less well-defined
borders, particularly at the prostate boundary and inferiorly towards the pelvic diaphragm and
anal canal.

Remarkably, the dosimetric hierarchy observed from DVH results is not in agreement with the
DSC results. It may have been suspected that the structures that produce the lowest DSC values

2013 Barghi et al. Cureus 5(11): e144. DOI 10.7759/cureus.144 8 of 10



would cause the greatest variability in the dosimetric parameters. Although bladder had the
highest DSC score as well as the least variable DVH results, the remaining two structures do not
show correlation between DSC score and DVH impact. The rectum had the lowest DSC score,
and yet the prostate contributed the most to DVH variability, despite having a higher DSC score
than the rectum. Furthermore, varying only rectum contours caused notable "isolated"
variability in DVH of only rectum, whereas varying only prostate contours caused notable
generalized variability in DVH for prostate, rectum, and bladder. The true dosimetric impact of
contouring variability in this case therefore could not have been predicted by assaying simple
similarity measurements alone. This decoupling of dosimetric effect and contouring variability
metrics suggests that future strategies of reducing contouring variability should seek to reduce
dose variation impact, not just contour compliance. There is no one-to-one correspondence
between contour and dose volumes. There is a non-linear interplay between dose optimization,
dose deposition, and contour topology.

There are a number of possible reasons for the different contributions of each structure to DVH
variability. Firstly, the optimization of treatment plans ranked the prostate voxels as dominant
over voxels of either OAR through a weighting assignment. Thus, the prostate volume
contributes more heavily to driving the dose optimization algorithm towards a large uniform
dose to the prostate. Secondly, the prostate is geographically the central structure, since it is
the target. It is in close proximity with two OARs, which may contribute to its high level of
contribution to the treatment plan optimization.

Most previous studies of contouring variability have not "followed through" on dosimetric
impact and have mostly only provided measurements of similarity, such as DSC. Studies that
have demonstrated DVH results [5-7] have shown that contouring variability can lead to
dosimetrically relevant treatment planning variability, although a previous prostate study [7]
suggests that contouring variability in prostate cancer may not have large dosimetric impacts.

Some notable limitations exist in this study. Firstly, as with all studies involving a contouring
challenge, the definition of a true gold standard is difficult. In this study, the gold standard was
generated using the STAPLE algorithm to achieve a consensus representative contour. This
approach reduces the subjectivity of a gold standard contour definition by a panel of experts.
Another limitation was the five-field IMRT treatment planning process that was used. Although
we used a consistent set of plan optimization parameters and a class solution that generally
produces clinically acceptable plans, no attempt was made to re-optimize individual plans
based on the test contours beyond the class solution. Other centres, or other operators, may use
different selections and approaches. Thus, the results of this study must be interpreted within
the context of a fixed treatment plan protocol.

Future work could include repeating similar experiments for other tumour sites, deriving
hierarchies for organ sets in regions other than pelvis where only similarity measurements have
been performed to date. Furthermore, the analytic approach used in this study could also be
used in the validation of automated contouring techniques.

There is known inter- and intra-fraction variability in organ volume and position during
radiotherapy. This contributes to dosimetric variability during actual treatment and is
influenced by other observations, such as interpretation of in-room image guidance
information used in patient setups or beam gating. Placing the contouring effects noted here
into the context of overall uncertainties in prostate cancer planning and delivery will be
important in order to identify weakest links in the planning-delivery chain where future effort
should be concentrated.  For example, would perfectly congruent OAR and PTV contouring
make a significant dosimetric difference, given the other downstream sources of uncertainty
that would still persist?
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Conclusions
We examined the effect of combined contouring variability on DVH curves of OARs and PTV for
a low risk prostate cancer case contoured by multiple observers.  Variability in prostate
contouring followed by rectal contouring caused the largest sources of dosimetric variation
with less impact of variations due to bladder contouring.  The dosimetric impact of contouring
variations did not track well with DSC scores, suggesting that future studies of contouring
quality must incorporate dosimetric endpoints as well as measures of contour congruence.     
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