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Abstract
Background
The evolution of new respiratory diseases, especially upper respiratory tract infections and resistance of
pathogens to various antibiotic treatments, needs an alternative way of medication. Chronic respiratory
infections in both adults and infants are the major cause of morbidity and mortality, particularly in
developing countries. The widespread application of nanomaterials in the field of medicine and the
incorporation of nanoparticles in drugs are taken into account. These nanomaterials are involved along with
the biosynthesis of plant extract. In this study, selenium oxide nanoparticles (SeO-NPs), known as a
significant trace element for human health, were synthesized in an eco-friendly manner.

Methodology
Green synthesis of Centella asiatica-mediated SeO-NPs was proceeded by titration method and
nanoparticles were synthesized. The color intensity, morphological characters, functional properties, and
involvement of phytochemical compounds were studied by using UV-visible spectroscopy (UV-Vis), Fourier-
transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscope
(SEM), and energy-dispersive X-ray spectroscopy (EDX) analysis.

Results
The synthesized extract showed a color change from brown to ruby red. Results obtained by characterization
and biological assays depicted that the Centella asiatica-mediated SeO-NPs showed absorbance at the peak
level 320 nm by UV-Vis spectroscopy, several phytochemical compounds, and O-H functional groups by FT-
IR which may be involved in the reduction of the selenium oxide nanoparticles. The XRD showed 57.1%
crystalline and 42.6% amorphous nature. The SEM images showed that agglomerated spherical shapes were
involved in biological activities. The EDX analysis showed the presence of Se, C, and O compounds. Further,
the antibacterial activity of the synthesized nanoparticles showed significant activity in the multidrug-
resistant respiratory pathogens.

Conclusions
Based on the characterization studies and biomedical assays, it can be concluded that the incorporation of
SeO-NPs along with the plant extract serves as the best remedy and organic treatment for upper respiratory
tract infections. We plan to conduct further in-vivo, toxicity-level studies, and clinical trials.

Categories: Infectious Disease, Healthcare Technology, Therapeutics
Keywords: multidrug resistance, nanobiotechnology, antibacterial activity, selenium oxide nanoparticles, green
synthesis

Introduction
The emergence of new diseases and the virulence of the pathogens create fear because of the challenges in
the treatment of diseases to find an effective cure [1]. Antibiotics have been discovered and utilized as
treatments for various diseases caused by microbial pathogens. However, the effectiveness of certain
antibiotics in treating these respiratory diseases has diminished or ceased altogether due to the
development of pathogen resistance [2]. Multidrug-resistant bacteria are microorganisms that have acquired
resistance to multiple antimicrobial agents from various categories [3]. In the United States, the Centers for
Disease Control and Prevention (CDC) has estimated that multidrug-resistant pathogens are responsible for
nearly 2 million illnesses and approximately 23,000 deaths per year [4]. The prevalence of multidrug-
resistant pathogens commonly begins with oral and respiratory infections. The potential reservoir for
respiratory pathogens is the oral cavity, which is directly connected anatomically to the respiratory tract [5].
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Respiratory infection is the primary cause of death in children under the age of five, accounting for more
than 20% of the annual global mortality rate of 10.6 million [6]. Among the respiratory tract infections, more
attention was given to the upper respiratory tract infection. The upper respiratory tract harbors a well-
documented bacterial community, known as the microbiome, which resides in the nasal cavity and
nasopharynx. Within this microbiome, there are opportunistic bacterial pathogens that are transient and can
cause illness when they invade other host tissues. Respiratory tract infections caused by these opportunistic
pathogens contribute significantly to the overall burden of disease [7]. To overcome infection and challenges
in treating multidrug-resistant bacterial communities, alternative methods of treatment should be
incorporated in an eco-friendly manner.

Plants are commonly utilized in the development of new medicinal formulations due to their abundant
secondary metabolites. These secondary metabolites, also known as phytochemicals, act as a natural
defense mechanism against diseases and pathogens. The use of these phytochemical antibiotics is
advantageous due to their minimal to no side effects in comparison to synthetic antibiotics. Additionally,
they possess the ability to overcome pathogen resistance to existing antibiotics [8]. The exploration of
medicinal plants has proven valuable in the quest for discovering novel biologically active compounds
through research [9]. Centella asiatica L is a perennial herbaceous creeper belonging to the Umbeliferae
family. It thrives in moist environments and is found extensively in tropical and subtropical regions across
various countries. Secondary metabolites such as triterpenoids, volatile and fatty acids, alkaloids, glycosides,
flavonoids, vitamins B, C, G, and some other amino acids are found in this plant [10].

Treatment has to be provided which cures rapidly and effectively with the help of the novel therapeutic
methods. Nanotechnology has emerged as a highly promising method for creating nanomaterials with
distinct properties at the nanometer scale [11]. It holds great potential in various domains, such as medicine,
biotechnology, chemistry, and physics, offering new possibilities and capabilities [12,13]. Among the various
nanoparticles, selenium oxide nanoparticles (SeO-NPs) are found in human and animal bodies in low
concentrations and are known for their significant activity [14]. The properties of SeO-NPs vary depending
on factors such as concentration, temperature, biomolecule nature, and pH of the reaction mixture. As a
result, SeO-NPs can exist in various crystalline and amorphous forms, each with its own shape, size, and
structure. It is worth noting that the size and shape of SeO-NPs play a significant role in determining their
properties. For instance, research has shown that SeO-NPs exhibit high biological activity and low toxicity
[15,16]. Recently, there has been a growing focus on research dedicated to the synthesis of nanoscale metals
using a variety of methods, including chemical, physical, and environmentally friendly synthesis approaches
[17]. Of these approaches, phyto-nanotechnology has emerged as a promising approach for synthesizing
nanoparticles, offering environmentally friendly, straightforward, fast, stable, and cost-effective methods
[18]. Typically, the extraction process involves immersing ground plants in a solvent, while maintaining
appropriate environmental conditions. It is important to note that different green substances have varying
optimal conditions for extraction [19]. This study focuses mainly on upper respiratory tract infections to
overcome the multidrug resistance conditions in an environmentally safe and beneficial manner aided by the
Centella asiatica-mediated synthesized SeO-NPs depending upon their biological activities.

Materials And Methods
Materials and bacterial strains
Selenium oxide, Muller-Hinton agar (MHA), streptomycin, and dimethyl sulfoxide (DMSO) were purchased
from Hi Media India. Upper respiratory isolates of Methicillin-resistant Staphylococcus aureus (MRSA),
Enterococcus faecalis, Pseudomonas aeruginosa, and Klebsiella pneumoniae were obtained from the Medical
Microbiology Laboratory at Saveetha Medical College in Chennai.

Sampling
Centella asiatica leaves were collected from Poonamallee, Chennai, Tamil Nadu, and Dr. N. Siva, Assistant
Professor, Department of Botany, Raja Doraisingam Government Arts College Sivagangai, Tamil Nadu,
authenticated the sample’s taxonomic identification.

Green synthesis of Centella asiatica leaf extract-mediated SeO-NPs
Fresh leaves of Centella asiatica were collected and thoroughly cleaned. The well-cleaned leaves were air-
dried and powdered using a mechanical grinder (Nanchang Kay Xin Yue Technologies Co., Jiangxi, China). To
prepare the aqueous plant extract, 10 g of the powdered leaves was added to 200 mL of distilled water. The
prepared solution was autoclaved at 121°C for 20 minutes and then allowed to cool. Then, the aqueous
extract was filtered with Whatman filter paper. Synthesis of SeO-NPs mediated by Centella asiatica aqueous
extract was carried out by titration method. For this, 0.01 M of SeO was taken in a burette, and the conical
flask was taken with aqueous Centella asiatica leaf extract and placed in a magnetic stirrer. The SeO was
added dropwise to the plant extract. This mixture solution was taken in an Eppendorf tube (T0) and exposed
to ultraviolet (UV) light for one hour before keeping it in a shaker overnight. The reaction mixture was
stirred for a designated period to facilitate the reduction of selenium ions and the formation of SeO-NPs.
Following this, sample 2 (T24) was subjected to UV and centrifuged at 4,500 rpm for 30 minutes. The
supernatant was discarded, distilled water was added to the remaining pellet and mixed thoroughly, and

2024 Nataraj et al. Cureus 16(4): e58350. DOI 10.7759/cureus.58350 2 of 12

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)


then recentrifuged at 4,500 rpm for 15 minutes. The supernatant was discarded and the pellet was
transferred and desiccated in a petri dish and placed in a hot air oven set at 60°C overnight. The dried
material was scraped into a fine powder, facilitating the synthesis of SeO-NPs.

Characterization of SeO-NPs
Characterization was performed to confirm the presence of specific nanoparticles synthesized by various
analysis techniques such as UV-visible (UV-Vis) spectroscopy (Labman Double Beam UV-vis
spectrophotometer LMSPUV1900S, India, 190-1,100 nm), Fourier-transform infrared spectroscopy (FT-IR)
(Bruker Alpha II, Germany), X-ray powder diffraction (XRD) (Bruker D8 Advance, Germany), scanning
electron microscope (SEM) (JEOL-800S), and energy-dispersive X-ray spectroscopy (EDX) (OXFORD X-Plor-
30/C-Swift). The UV-Vis spectroscopy aided in examining the optical characteristics of SeO-NPs synthesized
with Centella asiatica leaf extract. Further, the presence of chemical composition was analyzed by FT-IR
spectroscopy. The XRD facilitated identifying whether the present SeO-NPs were in a particular crystalline
phase or an amorphous state. Characteristic diffraction patterns are displayed by each crystalline and
amorphous phase. The SEM-EDX analysis helped confirm the morphological and elemental composition
present in the synthesized SeO-NPs.

Antibacterial activity
The antimicrobial activity was assessed using the well diffusion method [20]. MHA plates were prepared and
using sterile swabs, the bacterial cultures MRSA, Enterococcus faecalis, Pseudomonas aeruginosa, and
Klebsiella pneumoniae were evenly swabbed on the agar plates with the corresponding microbial suspension.
Using a sterile tip, wells were aseptically bored into the agar plates. Different concentrations of Centella
asiatica SeO-NPs extract were dispensed into the wells, with one well serving as the negative control, DMSO
(30 µL), and another one as the positive control, streptomycin (30 µL). After about 24 hours, the zone of
inhibition was measured using a calibrated ruler (zone scale).

Results
Green synthesis of SeO-NPs
Centella asiatica-mediated SeO-NP extract was synthesized using the titration method. The synthesized
extract showed a color change from black to brown (Figure 1). This color change indicates the reduction of
SeO to SeO-NPs due to the presence of secondary metabolites in the synthesized leaf extract.
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FIGURE 1: Overview of synthesis of Centella asiatica-mediated SeO-
NPs.
(A) 150 mL aqueous extract of Centella asiatica. (B) 25 mM of SeO. (C) Titration process. (D) Synthesized SeO-
NPs. (E) The powdered form of SeO-NPs.

SeO = selenium oxide; SeO-NPs = selenium oxide nanoparticles

UV-visible spectroscopy
The SeO-NPs synthesized through Centella asiatica exhibited a distinct absorption band at approximately
320 nm, indicating the formation of SeO-NPs through surface plasma resonance, as depicted in Figure 2.
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FIGURE 2: UV-visible spectroscopy absorbance wavelength range of
Centella asiatica-mediated SeO-NPs.
SeO-NPs = selenium oxide nanoparticles

FT-IR spectroscopy
FT-IR spectroscopy was utilized to characterize the synthesized SeO-NPs and identify the functional groups
present in the nanocomposites. Our findings indicated the presence of more than five distinct functional

groups in the synthesized nanocomposites. Notably, peaks were observed at 3,341 cm-1, 1,602 cm-1, 1,513

cm-1, 1,442 cm-1, 1,228 cm-1, 1,020 cm-1, and 638 cm-1. These peaks are attributed to various functional
groups such as O-H stretching, C=C, alkanes, C-O-C, C-CI, and C-Br, respectively, as illustrated in Figure 3.
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FIGURE 3: Fourier-transform infrared spectroscopy analysis of chemical
compounds and functional groups within the 500-4,000 cm-1.

XRD analysis
The synthesized SeO-NPs exhibited a higher degree of crystallinity (57.4%) compared to amorphous content
(42.6%). Consequently, the synthesized SeO-NPs demonstrated a notably stable crystalline nature, as
depicted in Figure 4.
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FIGURE 4: Energy-dispersive X-ray spectroscopy of Centella asiatica-
mediated SeO-NPs.
SeO-NPs = selenium oxide nanoparticles

SEM
The SEM analysis showed the morphological characteristics of the synthesized Centella
asiatica-mediated SeO-NPs which were found to be agglomerated spherical shapes distributed with an
average particle size of 80-100 nm (Figure 5).
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FIGURE 5: Scanning electron microscope analysis of Centella asiatica-
mediated SeO-NPs at 0.5 µm and 100 µm.
SeO-NPs = selenium oxide nanoparticles

EDX spectroscopy
The EDX analysis revealed the elemental composition of the synthesized nanoparticles in which C, O, and Se
were present in 64.5%, 34.3%, and 1.3%, respectively, as shown in Figure 6.
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FIGURE 6: Energy dispersive X-ray spectroscopy analysis of SeO-NPs
present in Centella asiatica-mediated SeO-NPs.
SeO-NPs = selenium oxide nanoparticles

Antibacterial activity
The Centella asiatica-mediated SeO-NPs showed significant antibacterial activity against MRSA, Klebsiella
pneumoniae, Pseudomonas aeruginosa, and Enterococcus faecalis  showing moderate activity at 80 µg/mL
concentrations when compared to the standard. The zone of inhibition is shown in Figure 7.
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FIGURE 7: Antibacterial activity of Centella asiatica-mediated SeO-NPs
against multidrug-resistant pathogens.
(A) Enterococcus faecalis, (B) Klebsiella pneumoniae, (C) methicillin-resistant Staphylococcus aureus, (D)
Pseudomonas aeruginosa and their zone of inhibition.

SeO-NPs = selenium oxide nanoparticles

Discussion
The green synthesis of the Centella asiatica-mediated SeO-NPs showed a color change from black to brown,
which can be compared with a similar study, wherein the synthesis of Se-NPs mediated by Ceropegia bulbosa
Roxb extract showed a color change from yellow to ruby red [21]. Hence, various biomolecules found in
plants, such as proteins, enzymes, flavonoids, terpenoids, phenolic compounds, and organic acids, among
other compounds, are involved in the synthesis and packaging of nanoparticles [22].

The UV-Vis spectroscopy of Centella asiatica-mediated SeO-NPs showed a wavelength range of absorption
peak at 320 nm. Similarly, the UV-Vis spectroscopy of synthesized Se-NPs from extracts of Withania
somnifera showed an absorption peak range of 320 nm [23]. Thus, this comparative absorption peak confirms
the presence of SeO-NPs. The FT-IR analysis of our leaves extract mediated SeO-NPs showed a broad peak of

3,341.74 cm-1 related to the stretching vibration of O-H groups. In comparison, Se-NPs synthesized based on
Amphipterygium glaucum extract showed peaks of the functional group, especially a broad absorption peak of

3,256 cm-1 responsible for the stretching vibrations (O-H) group [24]. Similar to another previous study, the

Se-NPs synthesized from orange peel extract showed a range of absorption at 3,279.53 cm-1 with the
stretching vibration of the O-H group [25]. Hence, the presence of the O-H group may be responsible for the
reduction of SeO-NPs. The analysis of XRD for Centella asiatica-mediated SeO-NPs showed diffraction peaks
of 2Ɵ 24.749° compared to the synthesis of Se-NP with orange peel extract showed similar diffraction planes
23.8° [25], which denotes the presence of crystalline nature SeO-NPs. In comparison to the Se-NPs
synthesized from Withania somnifera, the SEM analysis showed an agglomerated spherical shape [23].
Compared to this study, our Centella asiatica-mediated synthesized SeO-NPs showed a similar agglomerated
spherical shape. This agglomerated spherical shape may be due to the presence and binding of a large
number of functional groups. Some studies have shown that these agglomerated spherical shapes exhibited
significant biological activity [26,27]. The EDX analysis showed the presence of Se, C, and O which is similar
to the study of orange peel extract synthesis of Se-NPs [25].

The antibacterial activity for the respective multidrug-resistant bacteria Klebsiella pneumonia was sensitive
to the Centella asiatica-mediated SeO-NPs and showed an inhibition zone of 22 mm at 20 µg/mL whereas a
similar study of green synthesized Se-NPs from Elaeagnus indica leaf extract showed a minimum zone of
inhibition of 10 mm at 25 µg/mL concentration [28]. In comparison to this study, the Centella asiatica-
mediated SeO-NPs showed significant antibacterial activity against the upper respiratory tract infective
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pathogens. We aim to conduct further in-vivo studies and clinical trials in the future depending on their
activity.

Limitations
This study presents various in-vitro analyses to assess the synthesized SeO-NPs using Centella asiatica leaf
extract. Further exploration through in-vivo research, including animal and clinical trials, would enhance
our understanding of its effects.

Conclusions
The study found that Centella asiatica-mediated SeO-NPs had crystalline and amorphous properties, an
agglomerated spherical shape, and demonstrated significant antibacterial activity against multidrug-
resistant bacteria, particularly upper respiratory tract isolates. This combination of eco-friendly, plant
extract-mediated, synthesis of nanoparticles can be made into a pharmaceutical product. Further validation
will include minimum inhibitory concentration, minimum bactericidal concentration, in vivo, and
toxicological studies.
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