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Abstract
Objective: The purpose of this investigation is to explore the performance of an artificial neural
network (ANN) based prognostic index compared to traditional logistic regression (LR)
modeling and other published prognostic indices (PI) in classifying survival among patients
with brain metastases treated with stereotactic radiotherapy.

Methods: A database of 460 patients having received either stereotactic radiosurgery or
fractionated stereotactic radiation therapy brain radiotherapy was utilized and divided into
three sub-databases for ANN/LR analysis: a testing dataset, n=276 (65%); a cross-validation
dataset for training, n=69 (15%); and a validation dataset, n=115 (25%).  The primary endpoint
of survival was classified into one of three categories: unfavorable survival (<two months),
intermediate survival (two to six months) and favorable survival (>six months) endpoint
classifications. ANNs were optimized in terms of model structure, complexity, and a cost
optimization algorithm and then compared to both LR and published PIs in terms of
classification accuracy (CA) and total major misclassification rates (TMMR) according to the
three category survival scheme.

Results:  CA and TMMR for the nine published PIs for the total database (n=460) ranged from
34-53% and 4-11%, respectively. Both the LR and ANN approaches (in the validation database)
were over 10% superior to the best existing PI system in terms of CA (LR/ANN 62.6%, published
prognostic indices 27-49%) with a similar rate of TMMR (LR 7.8%, ANN 6.1%, published
prognostic indices 2-17%).

Conclusions: While a modest improvement over published PI was noted, use of various ANN
model structures, nodal complexity, and cost function optimization algorithms did not lead to a
significant improvement in survival classification when compared to LR.

Categories: Radiation Oncology, Epidemiology/Public Health
Keywords: radiosurgery, artificial neural network, classification, brain metastasis, radiation oncology,
prognostic index
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Validated prognostic factors and indices can be used to assist the clinician in patient counseling
and treatment decision-making.  Additionally, such indices can support the conduct of
prospective clinical trials by defining patient eligibility and stratification criteria. Multiple
prognostic factors have been shown to be related to patient survival in the context of brain
metastases which include: performance status, extracranial disease, age, controlled primary,
primary site, interval between primary disease and brain metastases, number/volume of brain
metastases, and clinical response to steroids [1-11].  The Radiation Therapy Oncology Group
(RTOG) Recursive Partitioning Analysis (RPA) brain metastases prognostic index is the oldest
system currently in use [2, 12-16].  However, the utility of the system has been limited by the
large relative proportion of patients within the intermediate-risk group, as has been previously
highlighted by several investigators [17-18]. 

Other systems have been subsequently developed using different combinations of the
previously listed prognostic factors.  These include the Score Index for Radiosurgery – SIR [4],
Rotterdam scale – RDAM [3], Basic Score for Brain Metastases – BSBM [5], Golden Grading
System  - GGS [8], Graded Prognostic Assessment – GPA [6, 10], Disease Specific GPA - DS-GPA
[9] and the German I and II scales developed by Rades et al. [7, 11].  A recent systematic review
of all published systems was not able to definitively identify a superior system [1]; however, a
recent neural network analysis suggested that the newly developed RTOG Graded Prognostic
Assessment (GPA) system may have some advantage in prognostic utility in the context of
WBRT patient populations [19].

Creation and assessment of prognostic factors and indices traditionally involves the use of Cox
proportional hazards and logistic regression modeling approaches for survival time and
categorical event endpoints, respectively.  Artificial neural networks (ANN) consist of a set of
multivariable approaches that mimic networks of biological neurons [20].   Layers of nodes
(input, hidden, and output) are interconnected with weighed connection lines (connecting all
nodes from one layer to another) in order to form the non-linear computational structure of the
ANN (Figure 1).  During ANN training with patient data (a training dataset that includes
prognostic factors and study endpoints), the initial weights of the connection lines that input
into the various nodes are altered using one of many available cost-function optimization
procedures against a separate cross-validation dataset.  Once training is completed, the trained
ANN can be assessed using a third independent validation dataset in order to report on ANN
prognostic ability (Figure 2).
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FIGURE 1: Single Layer Perceptron Artificial Neural Network
Example Demonstrating Input, Hidden, and Output Nodes and
Node Interconnections

FIGURE 2: Study Databases
Study Databases. VUmc = VU University Medical Centre, LRCP = London Regional Cancer
Program, SRS = stereotactic radiosurgery, fSRT = fractionated stereotactic radiation therapy.

ANN approaches have three main advantages over other techniques including: [1] not requiring
an assumption of proportional hazard risk to baseline, [2] utilization of non-linear (and non-
parametric) associations, and [3] all interactions between input factors and hidden layers are
allowed (i.e. model complexity).  Despite these advantages, several disadvantages with the use
of ANNs have been noted including: the possible over-fitting of testing datasets leading to
inferior validation predictive power, the complexity of ANN models which may hinder
translation into clinical applications, and non-robust weighting cost-function optimization
leading to local minima solutions.  ANN approaches have been reported in the medical
literature in the prediction of a variety of endpoints [20-23].

Given the lack of an ideal validated prognostic index to reliably and accurately classifying
patients into distinct prognostic groups relevant to clinical decision-making, the purpose of
this investigation is to explore the utility of an ANN-based index compared to traditional
logistic regression modeling.  Both ANN and logistic regression models are compared to
published prognostic indices in order to assess the potential improvement in patient
classification into distinct prognostic groups.

Materials And Methods
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Source databases
A retrospective review was performed on two institutional databases of 500 patients diagnosed
with oligometastatic brain metastatic disease.  Patients received either stereotactic
radiosurgery (SRS, n=381 with one to three brain metastases) or fractionated stereotactic
radiation therapy (fSRT, n=119, one to six brain metastases) between 2002 and 2011.  This
database contained pretreatment information (including derived risk stratification categories
for all nine published systems), treatment details, and outcome information, including the
primary endpoint of overall survival.  Patients were treated at one of two cancer sites: London
Regional Cancer Program (LRCP, London, ON, n=69 fSRT patients) or at VU Medical Centre
(VUMC, Amsterdam, The Netherlands, n=381 SRS patients, plus n=50 fSRT patients). 
Institutional ethics approval was obtained for this joint database analysis.   

Full treatment details for both SRS and fSRT approaches have been extensively published in the
medical literature [24-27].  Pooling of fSRT and SRS into a joint database for this investigation
was performed after confirming that treatment assignment (fSRT vs. SRS) was not a significant
predictor for overall survival.  This analysis was performed in the context of a propensity-score
matched pair analysis (accepted for publication in Radiotherapy and Oncology). 

Endpoint definitions and ANN study databases
The source databases described above were merged into a common database for further
statistical analyses.  Individual survival time was recoded into one of three discrete categories,
as suggested by Nieder, et al. [18], as no other internationally recognized prognostic categories
exist in the medical literature.  These three categories consisted of: unfavorable survival (<
two months); intermediate survival (two to six months); and favorable survival (> six months)
endpoint classifications.  In order to avoid the issue of incomplete follow-up of censored
patients with less than six months of follow-up, all patients (whether censored or not) treated
in the six months prior to the final database update were removed from the database (n=460
patients remaining).  These remaining patients were then randomly assigned into one of three
study databases (testing dataset n=276 (65%), cross-validation dataset for ANN training n=69
(15%), and an ANN validation dataset n=115 (25%)).    

Control analyses
Descriptive and operating characteristic (OC) statistics (Figure 3) were calculated for each of
the published prognostic indices for each of the three databases (testing, cross-validation, and
validation) and the complete study database (n=460).  Most prognostic indices could be
calculated for all study patients, except for the DS-GPA 412/460 (90%) and the RDAM 362/460
(79%) due to missing information from the database (non DS-GPA tumor sites and steroid
response information).  Missing information was found to be distributed relatively equally
between all study databases.  The first calculated OC statistic was prognostic index accuracy
(rate of correct classification equals high-risk category predicting survival < two months, plus
intermediate-risk category/categories predicting survival two to six months, plus low-risk
classification predicting survival > six months, Figure 3).  The second OC statistic was the total
major misclassification rate defined as proportion of all patients that are misclassified into the
opposite survival group (i.e. high-risk category patients surviving greater than six months, plus
low-risk category patients surviving less than two months, Figure 3).
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FIGURE 3: Confusion Matrix for Calculation of Classification
Accuracy and Total Major Misclassification Rate

A backward elimination logistic regression (LR) analysis using the constituent prognostic
factors of the published prognostic indices (primary class/site, presence of systematic
metastases, performance status, age, interval between primary diagnosis and brain metastases
presentation, volume/number brain metastases, and active primary) as input variables to
predict for categorical survival group (favorable, intermediate, and unfavorable survival
endpoint groups) was performed using NeuroSolutions 6.1 modeling software
(NeuroDimension Inc., Gainesville FL, USA).  Both classification accuracy and total major
misclassification rate for the logistic regression were calculated for all three study databases
(testing, cross-validation, and validation) and for the total study database.

Artificial neural network analyses
Artificial Neural Network (ANN) analyses were performed using the Express Builder
functionality of the NeuroSolutions software in which multiple ANN constructs can be assessed
in parallel to identify superior ANN approaches.  ANN analysis differs from traditional
regression approaches given the fact that multiple ANN structures and optimization
approaches need to be explored in order find the ideal ANN solution.  All steps described herein
will utilize the classification accuracy metric to adjudicate superior ANN (or LR) strategies. 
Receiver operator curves were considered not to be appropriate for this analysis given the
classification of a three-category endpoint.  The investigation of ANN approaches was defined
as an a-priori sequence of steps, which are described below:

Step 1 – ANN Structure Assessment:  Three unique ANN structures (One-layer Perceptron,
Two-layer Perceptron, and Probabilistic Neural Network) were assessed against the LR
approach to assess the ideal ANN structure for further node structure and cost optimization
algorithm.  These three structures were assessed due to their potential utility in the assessment
of smaller datasets (<1000 data-points).  In addition to the more familiar perceptron ANN
approaches, the Probabilistic Neural Network (PNN) approach was also used given the known
advantage of efficient training of smaller datasets.  The one-layer perceptron utilized nine
input nodes, five hidden nodes (to avoid over-fitting), and one output node with Levenberg-
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Marquardt (LM) optimization (MLP1-951-LM). The two-layer perceptron utilized nine input
nodes, six and then three hidden nodes, and one output node with LM optimization (MLP2-
9631-LM).  The PNN used a knowledge map approach with nine input nodes, 235 internal
nodes, and one output node.  Perceptron-based and PNN optimization was limited to 100
iterations and three epochs, respectively.

Step 2 – ANN Node Alteration: After selection of the best performing Step 1 ANN based on the
classification accuracy of all ANNs tested, the nodal structure of the ANN in question was
altered in order to explore whether or not the addition or subtraction of nodes improve the
classification accuracy of the ANN approach.  For perceptron-based ANNs, the number of
hidden nodes was changed to plus or minus two nodes (i.e. if five hidden nodes are used in step
one and found to be ideal, a range of hidden nodes from three to seven will be tested in step
two).

Step 3 – Cost Optimization Comparison: A series of available cost optimization algorithms were
used to assess whether or not the choice of algorithm used can impact model performance.  The
following algorithms were assessed: Levenberg-Marquardt (LM), Conjugate Gradient (CG), Delta
Bar Delta (DBD), Quickprop (QUICK), Step (STEP), and Momentum (MOM).

Step 4 – Final Optimization:  This final step will be utilized if the ANN approach is found to be
superior to the baseline LR approach.  The final ANN will be subjected to both a rotating 10-fold
cross validation to assess average ANN classification accuracy.  If the ANN approach is not
found to be superior to the baseline LR approach, then the step four analyses will not be
performed. 

Results
Database composition
Descriptive statistics for the total study database (n=460) as well as the three investigative
databases (testing, cross-validation, and validation) are summarized in Supplementary Table 1. 

Variable Category Total (n=460)

Data source

 fSRT 98 (21.3%)

 SRS 362 (78.7%)

Systemic metastases

 No 226 (49.1%)

 Yes 234 (50.9%)

Age Mean 61.4 years

Interval from diagnosis to brain metastases treatment Median 293 days

Volume of brain metastases

 Mean 8.35 cc

 Range 0.03 - 151.5 cc
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Number of brain metasteses

 Median 2

 Range 1-6

Primary active

 No 239 (52.0%)

 Yes 221 (48.0%)

Tumor classification

 Lung 263 (57.2%)

 Breast 48 (10.4%)

 Kidney 36 (7.8%)

 Melanoma 31 (6.7%)

 Colorectal 33 (7.2%)

 Ovary 16 (3.5%)

 Other 26 (5.7%)

 Esophageal 7 (1.5%)

WHO PS

 0 94 (20.4%)

 1 266 (57.8%)

 2 88 (19.1%)

 3 11 (2.4%)

 4 1 (0.2%)

Death

 No 56 (12.2%)

 Yes 404 (87.8%)

Survival Median 211 days

Survival classification

 Unfavorable (<2M) 75 (16%)

 Intermediate (2-6M) 254 (55%)

 Favorable (>6M) 131 (29%)

TABLE 1: Descriptive Statistics for the Three Study Databases and the Total
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Database.
fSRT = Fractioned Stereotactic Radiation Therapy; SRS = Stereotactic Radiation Therapy; cc = cubic centimeters; WHO = World
Health Organization; PS = Performance Status; M = months

In terms of the total database, the majority of patients were treated with SRS (78.7%).  Mean age
was 61.4 years with a median primary tumor to brain metastases diagnostic time interval of 293
days.  Over 97% of patients had a World Health Organization performance status level of 0-2. 
Median number of brain metastases was two (range: one to six) with a mean total volume of
8.35 cc (range 0.03-151.5cc).  Primary cancer was lung in 57.2% of cases with breast cancer
being the second most commonly diagnosed cancer in 10.4%.  The primary cancer was active at
the time of brain metastases treatment in 52% of cases and other systemic metastases were
present in 50.9%.  Comparison of the total database with each of the smaller investigative
databases did not highlight any significant difference between the groups.

Prognostic index classification for all published indices is summarized in Supplementary Table
2. 

Variable Category Total (n=460)

RTOG RPA Group [2]

 1 100 (21.7%)

 2 286 (62.2%)

 3 74 (16.1%)

BSBM Group [4]

 0 35 (7.6%)

 1 137 (29.8%)

 2 176 (38.3%)

 3 112 (24.4%)

SIR Group [3]

 1 40 (8.7%)

 2 351 (76.3%)

 3 69 (15.0%)

GPA Group [6, 10]

 1 108 (23.5%)

 2 301 (65.4%)

 3 32 (7.0%)

 4 19 (4.1%)
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GGS Group [8]

 0 122 (26.2%)

 1 194 (42.2%)

 2 116 (25.2%)

 3 28 (6.1%)

DSGPA Group [9] n=48 missing

 1 87 (21.1%)

 2 235 (57.0%)

 3 47 11.4%)

 4 213 (10.4%)

RDAM [3] n=98 missing

 1 33 (9.1%)

 2 253 (69.9%)

 3 76 (21.0%)

RADES I Group [7]

 1 50 (10.9%)

 2 80 (17.4%)

 3 204 (44.4%)

 4 126 (27.4%)

RADES II Group [11]

 1 37 (8.0%)

 2 157 (34.1%)

 3 266 (57.8%)

TABLE 2: Prognostic Index Classification Distribution.
Higher category number reflects lower risk. RTOG RPA = Radiation Therapy Oncology Group Recursive Partitioning Analysis;
BSBM = Basic Score for Brain Metastases; SIR = Score Index for Radiosurgery; GPA = Graded Prognostic Assesment; GGS =
Golden Grading System; DSGPA = Disease-Specific GPA; RDAM = Rotterdam System; RADES I = First Rades et al. scale circa
2008; RADES II = Second Rades et al. scale circa 2011

As noted by previous investigators, the intermediate-risk category/categories contained the
largest number of patients (34-77% with 8/9 indices >50%).  In terms of the most commonly
used RTOG RPA system, 100 patients (21.7%), 286 patients (62.2%), and 74 patients (16.1%)
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were in the high-risk, intermediate-risk, and low-risk categories, respectively.  A total of
404/460 (87.8%) of patients died during follow-up with a median actuarial survival for all
patients of 211 days.  Survival classification was unfavorable (< two months) in 75 patients
(16%), intermediate (two to six months) in 254 patients (55%), and favorable (> six months) in
131 patients (29%).

Traditional prognostic index assessment
Classification accuracy (CA) and total major misclassification rates (TMMR) for all nine
published prognostic indices are summarized in Table 3 for all study databases.  In terms of the
total database, classification accuracy ranged from 34% (DS-GPA) to 53% (RADES II).  Total
major misclassification rates ranged from 4% (RDAM and BSBM) to 11% (GPA).

Database Statistic
RTOG
RPA

BSBM
SIR
Group 

GPA
Group

GGS
Group

DS-GPA
Group

RDAM RADES I
RADES
II

Testing
(n=276)

CA
110/276
(40%)

121/276
(44%)

106/276
(38%)

94/276
(34%)

129/276
(47%)

89/244
(36.5%)

89/222
(40%)

124/276
(45%)

152/276
(55%)

 TMMR
17/276
(6%)

9/276
(3%)

10/276
(3.6%)

22/276
(8%)

13/276
(5%)

20/244
(8%)

6/222
(2.7%)

13/276
(4.7%)

20/276
(7%)

Cross-
Validation
(n=69)

CA
24/69
(35%)

23/69
(33%)

22/69
(32%)

22/69
(32%)

32/69
(46%)

19/62
(31%)

17/52
(33%)

26/69
(38%)

34/69
(49%)

 TMMR
7/69
(10%)

4/69
(6%)

8/69
(12%)

11/69
(16%)

6/69
(9%)

7/62
(11%)

3/52
(6%)

5/69
(7%)

9/69
(13%)

Validation
(n=115)

CA
38/115
(33%)

46/115
(40%)

38/115
(33%)

31/115
(27%)

45/115
(39%)

32/106
(30%)

34/88
(39%)

49/115
(43%)

56/115
(49%)

 TMMR
13/115
(11%)

7/115
(6%)

6/115
(5%)

19/115
(17%)

2/115
(2%)

10/106
(9%)

4/88
(55%)

8/115
(7%)

11/115
(10%)

Total (n=460) CA
172/460
(37%)

190/460
(41%)

166/460
(36%)

141/460
(31%)

206/460
(45%)

140/412
(34%)

140/362
(39%)

205/460
(45%)

242/460
(53%)

 TMMR
37/460
(8%)

20/460
(4%)

24/460
(5%)

51/460
(11%)

21/460
(5%)

37/412
(9%)

13/362
(4%)

26/460
(6%)

40/460
(9%)

TABLE 3: Classification Accuracy and Total Major Misclassification Rates for
Published Prognostic Indices.
CA = Classification Accuracy; TMMR = Total Major Misclassification Rate; RTOG RPA = Radiation Therapy Oncology Group
Recursive Partitioning Analysis; BSBM = Basic Score for Brain Metastases; SIR = Score Index for Radiosurgery; GPA = Graded
Prognostic Assesment; GGS = Golden Grading System; DSGPA = Disease-Specific GPA; RDAM = Rotterdam System; RADES I =
First Rades et al. scale circa 2008; RADES II = Second Rades et al. scale circa 2011

Artificial neural network assessment
The CA and TMMR (for the testing, cross-validation, and validation) metrics for all three steps
of the ANN assessment is summarized in Table 4. 
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Optimization
Step Model Testing (n=276) Cross Validation

(n=69) Validation (n=115)

  CA TMMR CA TMMR CA TMMR

Step One LR* 165
(59.8%) 23 (8.3%) 37

(53.6%) 8 (11.6%) 72
(62.6%) 9 (7.8%)

 MLP1-951-LM** 170
(61.6%) 19 (6.9%) 40

(58.0%) 6 (8.7%) 72
(62.6%) 7 (6.1%)

 PNN 186
(67.4%) 24 (8.7%) 39

(56.5%)
10
(14.5%)

68
(59.1%) 9 (7.8%)

 MLP2-9631-LM 156
(56.5%)

39
(14.1%)

37
(53.6%)

14
(20.3%)

70
(60.9%)

16
(13.9%)

Step Two LR (Same as Step One
LR)*

165
(59.8%) 23 (8.3%) 37

(53.6%) 8 (11.6%) 72
(62.6%) 9 (7.8%)

 MLP1-951-LM* ** 170
(61.6%) 19 (6.9%) 40

(58.0%) 6 (8.7%) 72
(62.6%) 7 (6.1%)

 MLP1-931-LM 164
(59.4%) 16 (5.8%) 39

(56.5%) 8 (11.6%) 64
(55.7%) 10 (8.7%)

 MLP1-941-LM 168
(60.9%) 22 (8.0%) 40

(58.0%) 6 (8.7%) 65
(56.5%) 7 (6.1%)

 MLP1-961-LM 153
(55.4%)

35
(12.7%)

39
(56.5%)

10
(14.5%)

67
(58.3%)

18
(15.7%)

 MLP1-971-LM 189
(68.5%) 16 (5.8%) 38

(55.1%) 7 (10.1%) 60
(52.1%)

12
(10.4%)

Step Three LR (Same as Step One
LR)*

165
(59.8%) 23 (8.3%) 37

(53.6%) 8 (11.6%) 72
(62.6%) 9 (7.8%)

 MLP1-951-LM* 170
(61.6%) 19 (6.9%) 40

(58.0%) 6 (8.7%) 72
(62.6%) 7 (6.1%)

 MLP1-951-CG 165
(59.8%) 21 (7.6%) 39

(56.5%) 6 (8.7%) 69
(60.0%) 7 (6.1%)

 MLP1-951-DBD 168
(60.9%) 22 (8.0%) 38

(55.1%) 6 (8.7%) 70
(60.9%) 11 (9.6%)

 MLP1-951-QUICK 163
(59.1%) 23 (8.3%) 40

(58.0%) 6 (8.7%) 67
(58.3%)

12
(10.4%)

 MLP1-951-STEP 158
(57.3%) 20 (7.2%) 37

(53.6%) 7 (10.1%) 72
(62.6%) 10 (8.7%)

 MLP1-951-MOM 163
(59.1%) 21 (7.6%) 39

(56.5%) 6 (8.7%) 68
(59.1%) 10 (8.7%)
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TABLE 4: Classification Accuracy and Total Major Misclassification Rate for Logistic
Regression and Selected ANN Optimization.
CA = Classification Accuracy; TMMR = Total Major Misclassification Rate; LR = Logistic Regression; MLP1 = One Hidden Layer
Multilayer Perceptron; MLP2 = Two Hidden Layers Multilayer Perceptron; PNN = Probabilistic Neural Network; LM = Levenberg
Marquardt Optimization; STEP = Step Optimization; CG = Conjugate Gradient Optimization; DBD = Delta Bar Delta Optimization;
QUICK = Quickprop Optimization; MOM = Momentum Optimization

The logistic regression model was found to have a CA and TMMR of 62.6% and 7.8%,
respectively.  The first step of the ANN optimization demonstrated that the one-layer
perceptron ANN (MLP1-951-LM) had an identical CA (to the LR approach) of 62.6% with a
slightly improved TMMR of 6.1%.  Optimization procedures in step two (variable hidden nodes)
and step three (cost optimization algorithm) did not further improve the CA and TMMR rates
compared to LR.  Step four was not conducted due to the fact that the final ANN approach
(MLP1-951-LM) did not demonstrate a superior CA rate to the traditional LR approach.  Both
the LR and ANN approaches (in the validation database) were over 10% superior to the best
existing prognostic system in terms of CA (LR/ANN 62.6%, published prognostic indices 27-
49%) with a similar rate of TMMR (LR 7.8%, ANN 6.1%, published prognostic indices 2-17%).

Discussion
Classification of brain metastases patients into different prognostic groups is an important
clinical and research endeavor due to the potential impact to patient treatment and clinical
trial design.  No superior system has been described in the literature; however, the RTOG RPA
system is the most commonly used index and has previously undergone extensive validation.
The development of these prognostic indices were primarily driven with statistical
methodologies that attempted to identify relatively small patient groups (i.e. good and poor
prognosis) with extreme survival characteristics leaving the majority of patients in
intermediate categories.  No prognostic indices have been developed with a-priori defined
clinically relevant survival categories; however, these categories have been recently suggested
in the medical literature and were used in this report [18].

Our investigation was not able to identify an ANN approach with superior CA to a more
traditional LR statistical approach.  This finding of equivalent utility between ANN and non-
ANN approaches has been previously been observed by Sargent et al. [20].  In this systematic
review of 28 ANN vs. LR/Cox regression analyses of larger datasets (>200 patients) within the
medical literature, half of the comparisons that were reviewed demonstrated equivalence
between ANN and LR/Cox regression analyses.  This effect becomes exaggerated as N becomes
large (i.e. > 5000 patients) where 87.5% of comparisons were equivalent between ANN and
LR/Cox.  Therefore, this analysis re-confirms the fact that using complex modeling does not
necessarily lead to improvements in predictive power over more traditional techniques, such as
LR and Cox proportional hazards regression analyses.

Both ANN and LR approaches were superior to published prognostic indices in terms of CA in
the order of 10% or greater.  This is likely due to the fact that both the ANN and LR approaches
were specifically optimized (using the cross-validation dataset) to categorize patients into one
of three distinct prognostic groups (unfavorable < two months; intermediate two to six
months; favorable > six months).  None of the published prognostic systems were similarly
optimized leading to inferior CA rates when compared to ANN and LR.  The ANN approach
demonstrated a small TMMR difference of less than 2% compared to the baseline LR statistical
approach; however, both models had TMMR similar to published prognostic indices.  Given this
small difference in TMMR performance, which was similar to other indices in terms of absolute
TMMR rates, an effective argument to adopt a complex ANN approach for patient
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categorization cannot be effectively made.  If internationally accepted categories, either
identical or similar to those proposed in this manuscript, can be generally agreed upon and
adopted, further research can be performed to create a new ideal prognostic index or to further
refine existing scales.  We would recommend the initial use of an LR approach to predict
survival categories, as this investigation did not find evidence of complex interactions between
prognostic variables requiring non-linear statistical techniques that are used in ANN
optimization.

This investigation has several limitations relating to the database utilized that includes: a
SRS/fSRT patient population with no external validation dataset.  Also, the possibility of
superior ANN optimization approaches and model structures need to be acknowledged.  Future
investigation in this area should include: integration of novel prognostic factors (e.g. genetic
analysis or imaging-based parameters) into existing or new prognostic indices, survival
classification standardization to drive future research and clinical care, and investigations into
broader patient populations (e.g. WBRT, neurosurgery) to assess study generalizability. 
Additionally, the prediction of long-term survival (>one year) needs to be explored further
using appropriate patient dataset(s) with sufficient median survival and statistical power to
draw robust conclusions.

Conclusions
The use of various ANN model structures, nodal complexity, and cost function optimization
algorithms did not lead to a significant improvement in survival classification when compared
to a LR approach.  Both ANN and LR approaches were superior in terms of CA but not TMMR
when compared to traditional brain metastases prognostic indices. 
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