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Abstract
Impaired cognitive processing speed is among the important higher brain dysfunctions in multiple sclerosis
(MS). However, the exact structural mechanisms of the dysfunction remain uncertain. This study aimed to
identify the brain regions associated with the impaired cognitive processing speed in MS by comparing the
cognitive processing speed, measured using the Cognitive Processing Speed Test (CogEval) z-score, and
brain regional volumetric data. Altogether, 80 patients with MS (64 with relapsing-remitting MS [RRMS] and
16 with secondary progressive MS [SPMS]) were enrolled. Consequently, CogEval z-scores were worse in
patients with SPMS than in those with RRMS (p=0.001). In the univariate correlation analyses, significant
correlations with CogEval z-score were suggested in the MS lesion volume (p<0.001; Spearman’s rank
correlation test) and atrophies in the cerebral cortex (p=0.031), cerebral white matter (p=0.013), corpus
callosum (p=0.001), thalamus (p=0.001), and putamen (p<0.001). Multiple linear regression analysis revealed
that putamen atrophy was significantly associated with CogEval z-score (p=0.038) independent of volume in
other brain regions, while thalamic atrophy was not (p=0.79). Univariate correlation analyses were further
performed in each of RRMS and SPMS. None of the evaluated volumetric data indicated a significant
correlation with the CogEval z-score in RRMS. Meanwhile, atrophies in the cerebral white matter (p=0.008),
corpus callosum (p=0.002), putamen (p=0.011), and pallidum (p=0.017) demonstrated significant
correlations with CogEval z-score in SPMS. In summary, the putamen could be an important region of
atrophy contributing to the impaired cognitive speed in MS, especially in the later disease stages after a
transition to SPMS.
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Introduction
Cognitive impairment (CI) is among the common neurological manifestations of multiple sclerosis (MS).
Overall, 40%-70% of patients with MS are thought to experience neuropsychological impairments in one or
more cognitive domains [1]. This could cause disturbances in a wide variety of cognitive functions, such as
information-processing speed (IPS), working and episodic memory, executive functions, visuospatial
abilities, and attention; however, language is rarely involved in MS [2]. IPS in MS is commonly evaluated
with cognitive tests, such as the Symbol Digit Modalities Test (SDMT), Paced Auditory Serial Addition Test
(PASAT), or Processing Speed Test (PST). In routine clinical care for patients with MS, SDMT or a similarly
validated test has been recommended as a screening tool [3]. To date, evidence of the involvement of deep
gray matter structures in the impaired IPS among patients with MS is increasing. In previous studies,
atrophy in the thalamus was found to be linked with poor performance in IPS tasks such as SDMT and PASAT
[1]. However, most previous studies have focused on the neural substrate for the results of cognitive tests in
early disease stages. The exact brain regions of atrophy primarily contributing to impaired cognitive
processing speed in the long-term progression of MS remain uncertain. Therefore, the present study aimed
to elucidate the brain regions playing primary roles in the development of IPS impairment over a longer
period of time by evaluating data from patients in both disease stages of relapsing-remitting MS (RRMS) and
secondary progressive MS (SPMS).

Materials And Methods
Participants
The present study recruited patients with MS who visited the Department of Neurology at Tohoku Medical
and Pharmaceutical University Hospital, Sendai, Japan, in 2021 and were evaluated using both the Cognitive
Processing Speed Test (CogEval) and brain volumetric measurements. Individuals who fulfilled the following
criteria were initially recruited: (1) diagnosed with MS based on the 2017 revision of the McDonald criteria
[4] and (2) aged between 20 and 70 years. Individuals with the following backgrounds were excluded:
positivity for anti-aquaporin 4 antibody and/or anti-myelin oligodendrocyte glycoprotein antibody in serum
and/or cerebrospinal fluid with a cell-based assay and a history of psychiatric illness other than stable
depressive symptoms [5]. Those who were diagnosed with primary progressive MS (PPMS) at the volumetric
evaluations were further excluded.
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CogEval z-scores
IPS was evaluated using an iPad-based screening PST, CogEval (Biogen Inc., Cambridge, MA)
(https://apps.apple.com/us/app/cogeval/id1366437045). This assessment tool was developed to evaluate
cognitive function in patients with MS and was validated against SDMT [3,6]. Demographically adjusted
standardized CogEval z-score for Japanese patients with MS was used in this study [7]. The z-score was
obtained based on data regarding age and educational background for each patient.

Brain volumetric measurements
Participants were evaluated using a whole-body 1.5 Tesla magnetic resonance imaging system (MAGNETOM
Aera, Siemens, Germany). The MR acquisition protocol included (1) a high-resolution sagittal three-
dimensional (3D) T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE) sequence (repetition
time [TR]: 2730 ms; echo time: 3.3 ms; inversion time [TI]: 1,000 ms; 176 slices; field of view [FoV]: 256 mm;
and measured isotropic voxel size: 1×1×1 mm) and (2) a sagittal 3D fluid-attenuated inversion recovery
(FLAIR) sequence (TR: 5,000 ms; TE: 335 ms; TI: 1,800 ms; 176 slices; FoV: 256 mm; and measured isotropic
voxel size: 1×1×1 mm). The regional and whole-brain volumes were estimated using the automated
FreeSurfer stream (version 7.1.0; https://surfer.nmr.mgh.harvard.edu/) [8-11]. The brain volume data
extracted from FreeSurfer’s automated segmentation results were normalized to their head size using the
estimated total intracranial volume. The unitless derivatives were used in the univariate and multivariable
analyses. MS lesion volume load was analyzed with the 3D T1 MPRAGE and 3D FLAIR datasets. The program
“icobrain ms” was utilized by uploading the DICOM data to the Icometrix website (http://icometrix.com) [8-
10].

Statistical analysis
Continuous variables are described as medians and interquartile ranges (IQRs: 25-75 percentiles).
Continuous variables were compared using the Mann-Whitney’s U test. Correlations between the outcome
variable (CogEval z-score) and each explanatory variable were evaluated by calculating Pearson’s correlation
coefficient (r) and Spearman’s rho (ρ). Multiple linear regression analysis with the CogEval z-score as the
dependent (outcome) variable was performed using the characteristics with p<0.10 in the preliminary
bivariate correlation analyses as the independent (explanatory) variables. All eligible explanatory variables
were entered simultaneously into the regression model. To evaluate the possible bias derived from
multicollinearity, the variance inflation factor (VIF) was obtained for each of the used explanatory variables.
The VIFs greater than 5 were considered to indicate the presence of multicollinearity that may compromise
the estimation of the correlation coefficients. Statistical significance was set at p<0.05. The R statistical
software version 4.1.3 (R Foundation for Statistical Computing, Vienna, Austria) was used for all statistical
analyses.

Ethics
This study was approved by the Institutional Review Board of the Tohoku Medical and Pharmaceutical
University Graduate School of Medicine (approval number: 2017-2-011). All participants provided written
informed consent. The study was conducted in accordance with the latest version of the Declaration of
Helsinki, as revised in 2013.

Results
Demographics and CogEval z-scores
Among the 80 patients with MS (19 men and 61 women), 64 (15 men and 49 women) had RRMS and 16 (4
men and 12 women) had SPMS. The median (IQR) age at the CogEval measurement was 43 (37-49) years.
The median (IQR) years of disease duration of MS at CogEval was 11 (8-17) years. The median (IQR) scores
of the Expanded Disability Status Scale at CogEval was 2.0 (1.0-3.0). As for the disease-modifying drugs used
at the CogEval, 32 were with fingolimod, 25 were with dimethyl fumarate, 15 were with natalizumab, two
were with interferon-β, one was with ofatumumab, and five were not treated. The CogEval z-scores did not
significantly differ between the 19 male and 61 female patients (p=0.4555, Mann-Whitney U test).

Between the 64 patients with RRMS and 16 with SPMS, the CogEval z-scores were significantly lower in
those with SPMS (median [IQR] of −0.675 [−1.51, +0.065] vs −2.52 [−4.02, −0.925]; p=0.0011, Mann-Whitney
U test). This finding was confirmed even after adjusting for the age and sex (p<0.0001, analysis of
covariance). A scatterplot with the disease duration and CogEval z-score after a stratification by disease
stage (RRMS vs SPMS) is presented in Figure 1. In each of the RRMS and SPMS disease stages, disease
duration was not associated with the CogEval z-score (R2=0.00 in both groups).
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FIGURE 1: Scatterplots of the disease duration and CogEval z-score in
RRMS and in SPMS
Scatterplots were created to demonstrate the 64 patients with RRMS (blue plots and line) and 16 patients with
SPMS (red plots and line). Colored areas indicate the 95% confidence interval ranges for the approximation line
in each disease stage group. In each disease group, disease duration was not associated with the CogEval z-
score (R2=0.00 in both the RRMS and SPMS groups).

RRMS, relapsing-remitting multiple sclerosis; SPMS, secondary progressive multiple sclerosis

Correlation with CogEval z-score in overall MS
Subsequently, Pearson’s correlation coefficients (r) and Spearman’s rho with the CogEval z-scores were
calculated for each of the evaluated explanatory variables (Table 1). The FLAIR-high lesion volume (r= −0.43,
p=0.0001), T1-low lesion volume (r= −0.47, p<0.0001), and atrophies in the cerebral cortex (r=0.40,
p=0.0002), cerebral white matter (WM) (r=0.48, p<0.0001), corpus callosum (r=0.47, p<0.0001), thalamus
(r=0.43, p<0.0001), putamen (r=0.54, p<0.0001), pallidum (r=0.33, p=0.0027), nucleus accumbens (r=0.30,
p=0.0072), and cerebellum WM (r=0.33, p=0.0026) indicated a statistically significant correlation (p<0.05)
that was evaluated using Pearson’s correlation coefficient. All of these variables achieved statistical
significance in Spearman’s rho, except for the atrophies in pallidum (ρ=0.22, p=0.055), nucleus accumbens
(ρ=0.21, p=0.067), and cerebellum WM (ρ=0.20, p=0.074).
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Characteristics Pearson’s r [95% CI] p-Value Spearman’s ρ p-Value

Age –0.079 [–0.29, +0.14] 0.49 +0.017 0.88

Disease duration –0.13 [–0.34, +0.092] 0.25 –0.043 0.71

FLAIR-high lesion load –0.43 [–0.60, –0.22] 0.0001 –0.40 0.0004

T1-low lesion load –0.47 [–0.63, –0.27] <0.0001 –0.39 0.0006

Whole brain volume +0.46 [+0.26, +0.63] <0.0001 +0.35 0.0023

Cerebral cortex* +0.40 [+0.20, +0.57] 0.0002 +0.24 0.031

Cerebral WM* +0.48 [+0.29, +0.63] <0.0001 +0.28 0.013

Corpus callosum* +0.47 [+0.28, +0.63] <0.0001 +0.36 0.0011

Thalamus* +0.43 [+0.23, +0.59] <0.0001 +0.36 0.0010

Caudate* +0.22 [–0.002, +0.42] 0.052 +0.16 0.16

Putamen* +0.54 [+0.36, +0.68] <0.0001 +0.40 0.0002

Pallidum* +0.33 [+0.12, +0.51] 0.0027 +0.22 0.055

Hippocampus* +0.044 [–0.18, +0.26] 0.70 +0.013 0.91

Amygdala* +0.10 [–0.12, +0.32] 0.36 +0.051 0.65

Nucleus accumbens* +0.30 [+0.084, +0.49] 0.0072 +0.21 0.067

Cerebellum cortex* +0.19 [–0.034, +0.39] 0.096 +0.16 0.16

Cerebellum WM* +0.33 [+0.12, +0.51] 0.0026 +0.20 0.074

TABLE 1: Bivariate correlation coefficients between the CogEval z-scores and each evaluated
characteristic
Pearson’s correlation coefficients (r) and Spearman’s rho (ρ) with the CogEval z-score were calculated from the data of the 80 patients with MS (64 with
RRMS and 16 with SPMS). A p-value of 0.05 or less was considered statistically significant.

FLAIR, fluid-attenuated inversion recovery; WM, white matter; MS, multiple sclerosis; RRMS, relapsing-remitting multiple sclerosis; SPMS, secondary
progressive multiple sclerosis

*Volumes adjusted for the estimated total intracranial volume

Multivariable analyses with the CogEval z-score
To validate the significance of thalamus and putamen volumes for the CogEval z-scores independent of
other brain regions, multiple linear regression analyses were performed among the 80 patients using the
CogEval z-scores as the outcome variable and the characteristics with p<0.10 in the bivariate correlation
analyses (FLAIR-hyperintense lesion load, cerebral cortex, cerebral WM, corpus callosum, cerebellum WM,
nucleus accumbens, and either of thalamus or putamen) as the explanatory variables (Table 2). T1-
hypointense lesion load was not included because of its strong positive correlation with FLAIR-hyperintense
lesion load. Consequently, putamen atrophy was significantly associated with the CogEval z-score
independent of other explanatory variables (standardized beta coefficient=0.456, p=0.038). Meanwhile,
thalamic atrophy was not significantly associated with the CogEval z-score independent of the three
volumes (standardized beta coefficient=0.050, p=0.79).
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Characteristics Standardized coefficient (β) t-score p-Value VIF

Regression model including the thalamic volume

FLAIR-hyperintense lesion –0.077 –0.47 0.64 2.590

Cerebral cortex* 0.297 2.11 0.038 1.911

Cerebral WM* 0.120 0.59 0.56 4.031

Corpus callosum* 0.209 1.16 0.25 3.167

Cerebellum WM* 0.168 1.18 0.24 1.977

Nucleus accumbens* –0.233 –1.51 0.14 2.326

Thalamus* 0.050 0.27 0.79 3.383

Regression model including the putamen volume

FLAIR-hyperintense lesion –0.003 –0.02 0.99 2.623

Cerebral cortex* 0.194 1.36 0.18 2.112

Cerebral WM* –0.021 –0.10 0.92 4.459

Corpus callosum* 0.223 1.28 0.21 3.140

Cerebellum WM* 0.088 0.66 0.51 1.841

Nucleus accumbens* –0.302 –1.99 0.051 2.395

Putamen* 0.456 2.11 0.038 4.833

TABLE 2: Multiple linear regression analysis for the CogEval z-scores
To validate the significance of thalamus and putamen volumes for the CogEval z-scores (dependent variable) independent of other brain regions, multiple
linear regression analysis was performed by simultaneously using the characteristics with p<0.10 in the bivariate correlation analyses (FLAIR-
hyperintense lesion load, cerebral cortex, cerebral WM, corpus callosum, cerebellum WM, nucleus accumbens, and either of thalamus or putamen) as the
explanatory variables with the 80 patients. T1-hypointense lesion load was not included because of its strong positive correlation with FLAIR-hyperintense
lesion load, resulting in a VIF of greater than 10. Upper half of the table included the putamen volume in the explanatory variables and the lower half
included the thalamic volume. A p-value of 0.05 or less was considered statistically significant.

VIF, variance inflation factor; FLAIR, fluid-attenuated inversion recovery; WM, white matter

*Volumes adjusted for the estimated total intracranial volume

Subgroup analysis in RRMS
To evaluate the significance of atrophy in the putamen in MS progression, Pearson’s correlation coefficients
(r) and Spearman’s rho (ρ) between CogEval z-scores and each evaluated characteristic was calculated in the
64 patients with RRMS (Table 3). None of the evaluated explanatory variables demonstrated significant
correlations with the CogEval z-scores, suggesting that an impaired cognitive processing speed with brain
regional atrophies are not remarkable in the early stages of MS.
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Characteristics Pearson’s r [95% CI] p-Value Spearman’s ρ p-Value

Age +0.11 [–0.14, +0.34] 0.41 +0.15 0.25

Disease duration +0.060 [–0.19, +0.30] 0.64 +0.12 0.36

FLAIR-high lesion load –0.21 [–0.44, +0.052] 0.12 –0.20 0.13

T1-low lesion load –0.23 [–0.46, +0.035] 0.089 –0.20 0.14

Whole brain volume +0.12 [–0.14, +0.37] 0.38 +0.102 0.45

Cerebral cortex* +0.11 [–0.14, +0.34] 0.39 +0.095 0.45

Cerebral WM* +0.066 [–0.18, +0.31] 0.60 +0.031 0.81

Corpus callosum* –0.18 [–0.41, +0.071] 0.16 +0.10 0.41

Thalamus* +0.19 [–0.061, +0.41] 0.14 +0.20 0.11

Caudate* –0.010 [–0.26, +0.24] 0.94 +0.021 0.87

Putamen* +0.23 [–0.014, +0.45] 0.064 +0.19 0.13

Pallidum* –0.002 [–0.25, +0.24] 0.99 –0.009 0.95

Hippocampus* –0.063 [–0.30, +0.19] 0.62 –0.067 0.60

Amygdala* –0.026 [–0.27, +0.22] 0.84 –0.025 0.84

Nucleus accumbens* +0.016 [–0.23, +0.26] 0.90 +0.000 >0.99

Cerebellum cortex* +0.11 [–0.14, +0.34] 0.40 +0.059 0.64

Cerebellum WM* +0.020 [–0.23, +0.26] 0.88 –0.028 0.83

TABLE 3: Bivariate correlation coefficients with the CogEval z-score in RRMS
Pearson’s correlation coefficients (r) and Spearman’s rho (ρ) between the CogEval z-score and each evaluated explanatory variable were calculated
among the 64 patients with RRMS. A p-value of 0.05 or less was considered statistically significant.

FLAIR, fluid-attenuated inversion recovery; WM, white matter; RRMS, relapsing-remitting multiple sclerosis

*Volumes adjusted for the estimated total intracranial volume

Subgroup analysis in SPMS
Finally, univariate correlation analyses were further performed within the 16 patients with SPMS as a
sensitivity analysis (Table 4). Atrophies in the cerebral WM (r=0.67, p=0.005), corpus callosum (r=0.72,
p=0.002), thalamus (r=0.53, p=0.034), putamen (r=0.66, p=0.0054), and pallidum (r=0.56, p=0.023)
demonstrated statistically significant Pearson’s correlation coefficients with impaired cognitive processing
speed even among the patients with SPMS. These brain regions demonstrated significant correlations with
the CogEval z-scores even when the correlations were assessed using Spearman’s rho, only except for
atrophy in the thalamus (ρ=0.41, p=0.12).
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Characteristics Pearson’s r [95% CI] p-Value Spearman’s ρ p-Value

Age –0.17 [–0.61, +0.36] 0.54 –0.19 0.49

Disease duration –0.027 [–0.52, +0.48] 0.92 –0.040 0.88

FLAIR-high lesion load –0.41 [–0.76, +0.13] 0.13 –0.45 0.090

T1-low lesion load –0.47 [–0.79, +0.060] 0.080 –0.50 0.058

Whole brain volume +0.65 [+0.21, +0.87] 0.0084 +0.57 0.028

Cerebral cortex* +0.41 [–0.11, +0.75] 0.12 +0.41 0.11

Cerebral WM* +0.67 [+0.26, +0.87] 0.0047 +0.64 0.0082

Corpus callosum* +0.72 [+0.36, +0.90] 0.0015 +0.72 0.0015

Thalamus* +0.53 [+0.051, +0.81] 0.034 +0.41 0.12

Caudate* +0.24 [–0.29, +0.66] 0.37 +0.23 0.39

Putamen* +0.66 [+0.24, +0.87] 0.0054 +0.62 0.011

Pallidum* +0.56 [+0.095, +0.83] 0.023 +0.59 0.017

Hippocampus* –0.21 [–0.64, +0.32] 0.44 –0.27 0.31

Amygdala* +0.031 [–0.47, +0.52] 0.91 –0.041 0.88

Nucleus accumbens* +0.29 [–0.24, +0.69] 0.27 +0.30 0.26

Cerebellum cortex* –0.19 [–0.63, +0.33] 0.47 –0.16 0.56

Cerebellum WM* +0.42 [–0.097, +0.76] 0.11 +0.32 0.22

TABLE 4: Bivariate correlation coefficients with CogEval z-score in SPMS
Pearson’s correlation coefficients between the CogEval z-score and each evaluated explanatory variable were calculated among the 16 patients with
SPMS. Atrophies in the thalamus, putamen, and pallidum were significantly correlated with the impaired cognitive processing speed in the 16 patients with
SPMS. A p-value of 0.05 or less was considered statistically significant.

FLAIR, fluid-attenuated inversion recovery; WM, white matter; SPMS, secondary progressive multiple sclerosis

*Volumes adjusted for the estimated total intracranial volume

Discussion
In this study, a significant correlation between putamen atrophy and impaired cognitive processing speed
was confirmed in the patients with MS. This association was not apparent in the earlier disease stages with
relapsing-remitting disease course but was remarkable in the later disease stages after a transition to SPMS.
To the best of our knowledge, this study is the first to demonstrate the potential role of putamen atrophy in
the progression of higher cognitive dysfunction in patients with MS. In addition to the putamen volume, the
corpus callosum volume may also influence the cognitive processing speed in the later stages of MS,
although the correlation in the multiple linear regression analyses did not reach statistical significance.
Certainly, atrophies in the cerebral cortex and cerebral WM were among the changes accompanying the
impaired higher brain function in later MS, but atrophies in more specific brain components, such as the
putamen, are also present and may be more primarily associated with the impaired cognitive processing in
MS.

CI is generally more prominent in patients with progressive forms of MS than in those with the relapsing-
remitting form, possibly owing to the extensive neurodegeneration [2]. The performance of SDMT is
reported to be the earliest to decline among several cognitive tests for MS [12-15] and has been
demonstrated to gradually decline over time [15]. Thalamic atrophy has been reported to correlate with
SDMT performance [16-18], which could be among the mechanisms underlying the early decline of cognitive
performance in MS [15,19]. However, poor performance on the SDMT is associated with multiple brain
pathologies, such as diffuse WM damage or reduced volumes in the deep gray matter, cerebellum, and
several cerebral cortical regions [1,15,18,20-24]. Consequently, SDMT is influenced by multiple factors other
than IPS, including attention, working memory, and mental flexibility [25,26]. The SDMT can be further
influenced by learning ability executive functions, as has been documented in SPMS [1]. Poor performance
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on the SDMT can be accelerated in the late phase of MS [15].

Although most of the previous studies have suggested that the thalamus is the most important neural
substrate for SDMT performance, our results indicated the potential importance of the putamen. We
considered that this discrepancy might be caused by several methodological factors. For example, our cohort
included both patients with RRMS and SPMS, suggesting that a long disease duration in some patients of
this study could have produced the finding. The correlations between CogEval z-score and thalamic volume
were not significant in 27 patients with RRMS with a disease duration of <10 years (Spearman's rho=0.24;
p=0.23) or in nine patients with RRMS with a disease duration of <5 years (Spearman's rho=0.067; p=0.86).
Similarly, the correlations between CogEval z-score and putamen volume were not significant in 27 patients
with RRMS with a disease duration of <10 years (Spearman's rho=0.25; p=0.20) or in nine patients with
RRMS with a disease duration of <5 years (Spearman's rho=0.13; p=0.73). These findings indicate that the
association between thalamic or putamen atrophy and poor PST performance in MS becomes clear in the
context of long-term observation periods. To identify the specific brain regions related to poor PST
performance in early disease stages, a larger sample size will be needed.

Our results indicated that the progressive putamen atrophy may affect the gradual decline of SDMT
performance during the long-term observational periods. Although the exact mechanisms remain uncertain,
several theories might be considered. For example, in a study that examined MS-specific atrophy (i.e.,
atrophy in excess of normal aging), the contribution of normal aging has been demonstrated for thalamic
atrophy, but it was not demonstrated for putamen atrophy [27]. Therefore, contribution of MS-specific
thalamic atrophy on the SDMT performance might decline as the patients’ age increases, whereas that of the
putamen atrophy does not. Another recent study demonstrated different SDMT performances between early,
intermediate, and late stages of brain volume loss [15]. The study also revealed that the volume of the
putamen was significantly different in the three stages, whereas that of the thalamus was significantly
different only between the early and intermediate stages. These results suggest that the correlation between
putamen volume and SDMT score might be more remarkable than that of thalamic volume in the later stage
of MS. Furthermore, several previous studies have reported the potential role of putamen damage in the
disturbed IPS in patients with MS [18,28-30]. Putamen is involved in voluntary fixational control and
saccades and contributes to planning tasks with a visual searching component. A previous study suggested
the role of the putamen in IPS deficits, emphasizing the role of visual movements in cognitive tasks
influenced by visual searching such as SDMT [18,28]. Similar to SDMT, the PASAT is also a useful cognitive
tool with high sensitivity to sustained attention and IPS alterations, although the PASAT involves several
different cognitive functions from SDMT, such as auditory perception and processing, speech production,
and mathematical abilities. To date, several studies have reported that the PASAT score is associated with
volumes of several subcortical structures, including the putamen [28,31]. The supposed scenario for the
pathogenesis of MS-related CI would not be simple, probably based on the focal and diffuse involvement of
both the white matter and gray matter, together with pathological changes in specific cortical and
subcortical central nervous system structures [1]. Trying to link a specific cognitive domain to a single
specific brain area might be an inappropriate approach, as a specific cognitive domain is supported by
multiple brain structures, and individual neuronal networks support multiple cognitive domains [1].
Therefore, we emphasize the importance of the putamen, in addition to the thalamus, as one of the
substrates and imaging biomarkers underlying the SDMT performance in a long-term observation of
patients with MS.

This study had several limitations. First, this study did not evaluate the physical and mental conditions that
may affect the cognitive profiles in patients with MS, such as depression, anxiety, fatigue, and sleep
disturbances [32]. For example, increased depressive symptoms in patients with MS over time have been
associated with decreased processing speed [33,34]. Additionally, a strong negative correlation has been
identified between fatigue and processing speed in MS [35]. To date, several studies have suggested that MS-
related fatigue is associated with the caudate, putamen, pallidum, and pons [36], or striato-thalamo-cortical
network [37-39]. Moreover, neuroimaging studies in patients with MS with fatigue, depression, and pain
have indicated gray matter atrophy and decreased functional connectivity in the prefrontal cortex, basal
ganglia, and limbic system that are core areas of the mesocorticolimbic system, a key structure in valence
and reward processing [40]. Thus, the atrophy of the putamen may have affected the results of the SDMT via
the complication of depression or fatigue. Finally, the generalizability of the findings to other races remains
unknown. For example, a recent study revealed that the PST scores in Japanese volunteers differed from
those of the age-restricted and propensity score-matched U.S. cohort. Japanese people use Kanji in writing
the language, which is a logographic system of Chinese characters. Visual memory is supposedly
instrumental in literacy acquisition of logographic Kanji from childhood [41], and this early life visual
memory exercise may contribute to a facilitated processing speed in the PST among Japanese [7].

Conclusions
A progression of impaired cognitive processing speed was confirmed in the later disease stages of MS.
Among the evaluated brain regions, putamen atrophy was suggested as a primary finding underlying the
impaired cognitive processing speed in the disease. This finding was more remarkable in later disease stages
after a transition to SPMS than in earlier disease stages. Further studies are needed to elucidate the role of
atrophy in putamen in the mechanisms of MS.
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