
Received 12/14/2023
Review began 03/07/2024
Review ended 04/11/2024
Published 05/13/2024

© Copyright 2024
Muralidhar et al. This is an open access
article distributed under the terms of the
Creative Commons Attribution License CC-
BY 4.0., which permits unrestricted use,
distribution, and reproduction in any
medium, provided the original author and
source are credited.

Exploring the Impact of Batch Size on Deep
Learning Artificial Intelligence Models for
Malaria Detection
Rohit Muralidhar , Michelle L. Demory , Marc M. Kesselman

1. Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA 2.
Medical Education, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale,
USA 3. Rheumatology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort
Lauderdale, USA

Corresponding author: Marc M. Kesselman, mkesselman@nova.edu

Abstract
Introduction
Malaria is a major public health concern, especially in developing countries. Malaria often presents with
recurrent fever, malaise, and other nonspecific symptoms mistaken for influenza. Light microscopy of
peripheral blood smears is considered the gold standard diagnostic test for malaria. Delays in malaria
diagnosis can increase morbidity and mortality. Microscopy can be time-consuming and limited by skilled
labor, infrastructure, and interobserver variability. Artificial intelligence (AI)-based tools for diagnostic
screening can automate blood smear analysis without relying on a trained technician. Convolutional neural
networks (CNN), deep learning neural networks that can identify visual patterns, are being explored for use
in abnormality detection in medical images. A parameter that can be optimized in CNN models is the batch
size or the number of images used during model training at once in one forward and backward pass. The
choice of batch size in developing CNN-based malaria screening tools can affect model accuracy, training
speed, and, ultimately, clinical usability. This study explores the impact of batch size on CNN model
accuracy for malaria detection from thin blood smear images.

Methods
We used the publicly available “NIH-NLM-ThinBloodSmearsPf” dataset from the United States National
Library of Medicine, consisting of blood smear images for Plasmodium falciparum. The collection consists of
13,779 “parasitized” and 13,779 “uninfected” single-cell images. We created four datasets containing all
images, each with unique randomized subsets of images for model testing. Using Python, four identical 10-
layer CNN models were developed and trained with varying batch sizes for 10 epochs against all datasets,
resulting in 16 sets of outputs. Model prediction accuracy, training time, and F1-score, an accuracy metric
used to quantify model performance, were collected.

Results
All models produced F1-scores of 94%-96%, with 10 of 16 instances producing F1-scores of 95%. After
averaging all four dataset outputs by batch size, we observed that, as batch size increased from 16 to 128, the
average combined false positives plus false negatives increased by 15.4% (130-150), and the average model
F1-score accuracy decreased by 1% (95.3%-94.3%). The average training time also decreased by 28.11%
(1,556-1,119 seconds).

Conclusion
In each dataset, we observe an approximately 1% decrease in F1-score as the batch size was increased.
Clinically, a 1% deviation at the population level can create a relatively significant impact on outcomes.
Results from this study suggest that smaller batch sizes could improve accuracy in models with similar layer
complexity and datasets, potentially resulting in better clinical outcomes. Reduced memory requirement for
training also means that model training can be achieved with more economical hardware. Our findings
suggest that smaller batch sizes could be evaluated for improvements in accuracy to help develop an AI
model that could screen thin blood smears for malaria.

Categories: Pathology, Infectious Disease, Healthcare Technology
Keywords: medical innovation, public health, malaria screening, healthcare technology, artificial intelligence (ai)

Introduction
Malaria is a major public health problem and a leading cause of death in developing countries worldwide [1].
According to the WHO, there were approximately 247 million cases of malaria in 2021 across 84 countries.
Mortality has steadily decreased since 2000. However, in 2020, malaria cases resulting in death increased to

1 2 3

Open Access Original
Article DOI: 10.7759/cureus.60224

How to cite this article
Muralidhar R, Demory M L, Kesselman M M (May 13, 2024) Exploring the Impact of Batch Size on Deep Learning Artificial Intelligence Models for
Malaria Detection. Cureus 16(5): e60224. DOI 10.7759/cureus.60224

https://www.cureus.com/users/464073-rohit-muralidhar
https://www.cureus.com/users/118580-michelle-demory-beckler
https://www.cureus.com/users/118018-marc-m-kesselman
javascript:void(0)

625,000 and remained at 619,000 in 2021. While malaria is a global disease, many cases can be localized to
specific world regions because 29 of the 84 countries account for 96% of the cases globally. The WHO Africa
region was estimated to account for 234 million of the 247 million cases globally in 2021 [1,2].

Unicellular protozoa of the Plasmodium genus are responsible for the pathogenesis of malaria. Some species
of Plasmodium include Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, and Plasmodium
knowlesi [3]. Transmission of Plasmodium in humans is mainly via a bite from a female Anopheles
mosquito [4]. When an infected female Anopheles mosquito bites a human, sporozoites from its salivary
glands enter the bloodstream [5]. Plasmodium parasites ultimately invade erythrocytes, where growth and
replication occur [6].

Diagnostic tests for malaria
For a patient suspected of having malaria, the two diagnostic tests for confirmation are real-time diagnostic
tests or light microscopy of peripheral blood smears, with the latter considered the gold standard for malaria
diagnosis [7]. Two types of blood smears can be prepared: thin and thick blood smears. Thin and thick blood
smears both involve a drop of blood on a slide, where the thin blood smear is spread into a thinner layer
across a larger area and is fixed in methanol [8]. Thin and thick smears are subsequently stained with Giemsa
stain before observation [7]. Through microscopic visualization, the species can be identified, infection
staging can be assessed, and parasite density can be determined. The major disadvantages of microscopy-
based diagnosis are the lack of available skilled technicians and infrastructure to support the preparation and
analysis of blood smears [9]. Immunochromatographic rapid diagnostic tests (RDTs), which fall under the
category of real-time diagnostic tests, on the other hand, test for antigens or enzymes specific to
Plasmodium species. Antigenic testing for P. falciparum histidine-rich protein 2 (pfHRP2) is specific for P.
falciparum, P. falciparum histidine-rich protein 2 (pLDH) can be specific for P. falciparum and P. vivax, and
the aldolase enzyme is a pan-malarial antigen [7].

BinaxNOW is an FDA-approved RDT (BinaxNOW™, Abbott, Chicago, IL) that detects HRP2 and Aldolase to
identify P. falciparum and generic Plasmodium, respectively. Data from a trial with BinaxNOW suggested an
overall sensitivity of 82% for pan-Plasmodium detection and a sensitivity of 95% for P. falciparum [10]. In a
different study with patients in Cameroon, SD Bioline, a histidine and LDH-based RDT, had an overall
diagnostic sensitivity of 95.33%, with a specificity of 94.34%. In the same study, manual light microscopy-
based diagnosis was determined to have a sensitivity of 94.86%, with a specificity of 94.34% as well. PCR
detection of malaria was the control methodology to assess diagnostic accuracy [11]. In developing and
evaluating new screening and diagnostic methodologies, these specificities and sensitivities can therefore be
used as benchmarks.

The clinical presentation of malaria typically includes recurrent fever, headache, malaise, and muscular
pains among other symptoms that can be mistaken for gastrointestinal infection or influenza [12]. Rapid
diagnosis and treatment are therefore important in the management of malaria because delays in the
diagnosis and treatment of malaria result in increased patient morbidity and mortality [13]. Delayed
diagnosis and treatment of malaria can lead to serious complications such as cerebral malaria, renal failure,
and pulmonary edema, elevating both mortality and morbidity risks [4]. Microscopy, the gold standard
diagnostic modality, can be time-consuming, and, as discussed above, is limited by skilled labor and
infrastructure. Additionally, inter-technician variability in the interpretation of blood smears impacts
interobserver reliability across time and geography [14].

The role of artificial intelligence (AI) in diagnostic screening
AI-based tools for diagnostic screening allow for an automated and scalable approach to analyzing blood
films without the need for a trained human microscopy interpreter [15]. Computer vision is a field within the
broader AI umbrella that focuses on allowing computers to analyze and obtain information from images and
videos [16]. In medicine, computer vision can be applied to various types of images to identify specific image
features for diagnostic or screening purposes [17]. One key computer vision-based method is to use a
convolutional neural network (CNN), which is a form of deep learning neural network architecture that can
be used to identify visual patterns. CNNs attempt to learn features, including local relationships and
patterns, about an image from its pixels and their relationship to one another. CNNs are thus being explored
for their application in medical image analysis, specifically use cases such as abnormality detection and
disease classification. CNNs can be used to explore different image modalities such as X-rays, MRIs, and
CTs [18]. CNNs are also being applied to screen and identify pathology on blood films, such as the study
conducted by Torres et al. in Peru that assessed the potential for a CNN-based malaria detection device [14].

Among the many parameters that can be optimized in CNN model building, one such hyperparameter is
batch size, which is the number of images used during model training at once in one forward and backward
pass [19]. The choice of batch size has a profound impact on model accuracy, the degree of overfitting, time
to convergence, and training speed [20]. In addition to the quality of the trained model, batch size directly
affects the amount of memory that the model requires during training because of the number of concurrent
images that are fed into the model for training [21]. Thus, factors such as hardware constraints are
considerations when selecting a batch size for a particular use case. Additionally, depending on the type of

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 2 of 24

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

image dataset being used, there may be an optimal batch size to maximize model accuracy. At the
intersection of optimizing for accuracy and working within hardware constraints sits a potential range of
ideal batch size parameters for a particular problem. In this study, we develop a CNN model and train it on
single-cell thin blood smear images. The AI model is similarly trying to identify Giemsa-stained blood smear
images as would be analyzed in light microscopy. We then tested the model against different blood smear
image datasets, with varying batch sizes to control for the impact that batch size may have on outputs such
as model accuracy. In this study, we thus sought to explore the impact that batch size ultimately has on CNN
model training with single-cell thin blood smear images via test accuracy and the potential clinical impact
that these variations can have at scale.

Materials And Methods
Dataset description
The “NIH-NLM-ThinBloodSmearsPf” dataset, a publicly available dataset courtesy of the United States
National Library of Medicine, consists of a set of blood smear images for P. falciparum. The dataset was
developed by the National Library of Medicine of the National Institutes of Health. This dataset was
originally used for cell detection in the publication by Yasmin et al. [22]. The dataset consists of thin blood
smear microscopy images that were obtained originally from 193 patients (148 P. falciparum-infected and 45
uninfected control patients). Single-cell images from the microscopy images, categorized as “parasitized”
and “uninfected,” were available for download and published on the National Library of Medicine Malaria
data website (https://lhncbc.nlm.nih.gov/LHC-research/LHC-projects/image-processing/malaria-
datasheet.html).

Per the dataset documentation, the microscopy images were obtained from patients at Chittagong Medical
College Hospital in Bangladesh. Thin blood smears were Giemsa-stained, and images were captured using a
smartphone camera. Images were then annotated and reviewed manually by an expert. The original study
from which these images were captured was approved under the Institutional Review Board (IRB) at the
National Library of Medicine, National Institutes of Health (IRB#12972).

The single-cell image collection consists of 13,779 single-cell images categorized as “parasitized” and
13,779 categorized as “uninfected” (Figure 1).

FIGURE 1: Random selection of images from the 13,779 parasitized and
13,779 unparasitized images, along with corresponding labels, after
resizing and importing for use in models.

Analysis tools
CNN models were developed with the Python programming language (Python version 3.10.12), which is an
open-source language often used for data analysis and computing. Some of the Python libraries used in this
study include pandas (v1.5.3), numpy (v 1.23.5), tensorflow (v2.13.0), and keras (v2.13.1). A complete list of
Python libraries and versions is included in Appendix 1.

Google Colab was used as the development environment. Randomized data was stored on Google Drive for
direct access from the Google Colab development environment. Outcome metrics were recorded in Microsoft
Excel, and subsequent analysis was performed in Microsoft Excel. Additional analysis and visualization of
data were done using the R programming language, which is an open-source programming language used for
statistical analysis and data visualization. Analysis in R statistical software (version 2023.06.2+561; R
Foundation for Statistical Computing, Vienna, Austria) was done using R studio.

Data randomization
The single-cell images were downloaded from the National Library of Medicine’s Malaria Data Website.

Using a Python script (Appendix 2), four different randomized datasets were created: Randomization_1,
Randomization_2, Randomization_3, and Randomization_4. For each dataset, the script randomly selected
1,300 of the original images labeled as “parasitized” (P. falciparum-infected cells) and 1,300 of the images
categorized as “uninfected” and delegated them into a “test” folder which would then be used to assess the
performance of trained CNN models. The remaining images were saved into a “train” folder and used to

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 3 of 24

javascript:void(0)
https://lhncbc.nlm.nih.gov/LHC-research/LHC-projects/image-processing/malaria-datasheet.html
javascript:void(0)
https://assets.cureus.com/uploads/figure/file/852407/lightbox_08f25160d27c11eebf03d7f313b3618c-Picture1.png

train CNN models. The result was four datasets, each consisting of 2,600 “test” images (1,300 “parasitized”
and 1,300 “uninfected”) and 24,958 “train” images (12,479 “parasitized” and 12,479 “uninfected”) (Figure 2).

FIGURE 2: Left: number of parasitized (n = 1,300) and uninfected (n =
1,300) images set aside for model testing. Right: graphical depiction of
the number of parasitized (n = 12,479) and uninfected (n = 12,479)
images set aside for model training.

Analysis
For each randomized dataset, images were imported from the corresponding zip file, resized to 64x64
images, and normalized by dividing by 255 prior to use in any of the models.

Four identical 10-layer CNN models were created consisting of “Conv2D,” “MaxPooling2D,” “Dropout,”
“Flatten,” and “Dense” layers. Each model was similarly trained with a validation split of 0.2, splitting 80%
of the images set aside for training into actual training images and 20% into validation during model fitting.
Models were fitted without callbacks and trained for 10 epochs. The differentiating feature of the four
models was that they were trained with batch sizes of 16, 32, 64, and 128, respectively. These four models,
parameterized with different batch sizes, were then trained and tested with the four randomized datasets
prepared during data randomization, yielding a total of 16 sets of results iterated across the four models and
four datasets (Figure 3).

FIGURE 3: Overview of study design, depicting randomization of
datasets, and the four specific batch sizes utilized in CNN models for
each dataset.

For each of the 16 sets of model training and testing outputs, the following metrics were collected as data
variables for analysis:

F1-score: The F1-score is an accuracy metric used to quantify the performance of binary medical tests and is
the harmonic mean of precision and recall [23]. Mathematically, it can be calculated as follows:

F1-score = 2 x (Precision x Recall)/(Precision+Recall) [24].

True positive: Total number of instances when a CNN model correctly predicted “parasitized” from test
images. This was computed and visualized using the “confusion_matrix()” Python script from the sklearn
library.

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 4 of 24

javascript:void(0)
https://assets.cureus.com/uploads/figure/file/852417/lightbox_e35ab780990a11eea3ee0b5661687f0b-Figure-2_UPDATED.png
javascript:void(0)
https://assets.cureus.com/uploads/figure/file/852422/lightbox_06f73ba0990b11eebe96050ce0438e46-Figure-3---From-Slide.png
javascript:void(0)
javascript:void(0)

True negative: Total number of instances when a CNN model correctly predicted “uninfected” from test
images. This was computed using the “confusion_matrix()” Python script from the sklearn library.

False positive: Total number of instances when a CNN model incorrectly predicted “parasitized” from test
images, when the image was actually classified as “uninfected.” This was computed using the
“confusion_matrix()” Python script from the sklearn library.

False negative: Total number of instances when a CNN model incorrectly predicted “uninfected” from test
images, when the image was actually classified as “parasitized.” This was computed using the
“confusion_matrix()” Python script from the sklearn library.

Duration of training: The total amount of time, in seconds, taken for the model fitting to occur with training
data, with 10 epochs. This was computed using the “confusion_matrix()” Python script from the sklearn
library.

Training time: How long does the model take to complete training with 10 epochs.

In this study, when we refer to the “confusion matrix,” we are referring to the true-positive, true-negative,
false-positive, and false-negative predictions by a CNN model.

The impact of batch size on model performance and clinical outcomes was assessed by comparing outcomes
variables’ data when simulating against test images for each randomization and batch size combination.
Comparative analysis and graphical interpretation of the data variables were conducted in Microsoft Excel
and using R.

Results
The four models with batch sizes of 16, 32, 64, and 128 were run against four sets of randomized data to
produce 16 sets of output data. All the models produced F1-scores of 94% to 96%, with 10 of the 16
instances producing F1-scores of 0.95 and an average F1-score across all scenarios of 94.75% (Figure 4). The
sum of the false negatives and false positives across all 16 instances ranged from 110 to 163, with a mean
value of 138.125 (Figure 4).

FIGURE 4: Left: F1-scores across batch sizes for each randomized
dataset. Right: Total false-positive and false-negative CNN model
predictions across batch size for each randomized dataset.

After averaging all four dataset outputs by batch size, we observed that from batch sizes of 16-128, the
average combined number of false positive plus false negative instances increased by 15.4% (130-150), which
correlated with an overall model F1-score accuracy decrease of 1% (95.3%-94.3%). Training time also
decreased by 28.11%, from 1,556 seconds to 1,119 seconds (Table 1).

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 5 of 24

javascript:void(0)
javascript:void(0)
https://assets.cureus.com/uploads/figure/file/852428/lightbox_9b739f80990b11eeb6350dd09e26a552-Figure-4.png
javascript:void(0)

 Confusion Matrix

Batch
Size

True
Positive

True
Negative

False
Positive

False
Negative

False Negative + False
Positive

F1-Score
Average

Training
Time(s)

16 1,231 1,240 61 69 130 95.3% 1,556

32 1,230 1,234 66 71 136 94.8% 1,226

64 1,223 1,241 60 77 137 94.8% 1,092

128 1,234 1,216 84 67 150 94.3% 1,119

TABLE 1: Confusion matrix, F1-score, and training time by batch size, after averaging results for
randomized datasets 1-4.

However, it should be noted that average false negatives individually did not increase as steadily as the
combined false negatives plus false positives, as batch size increased (Figures 5-6).

FIGURE 5: Stacked bar chart of confusion matrix data for each
randomization vs. batch size combination analyzed in this study.

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 6 of 24

javascript:void(0)
javascript:void(0)
https://assets.cureus.com/uploads/figure/file/852442/lightbox_76347270990c11ee914209259fb515ac-Figure-5.png

FIGURE 6: False-negative results for each dataset, with varying batch
size.

Table 2 presents a full summary of all model prediction accuracy variables that were calculated and training
time for each randomization vs batch size CNN model analyzed in this study. The range (maximum minus
minimum, or delta) for each metric by batch size was also calculated to analyze the dispersion of outcome
data across randomized datasets and can be seen in Table 3.

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 7 of 24

https://assets.cureus.com/uploads/figure/file/852445/lightbox_8ae53b00990c11ee989c05476f139663-Figure-6.png
javascript:void(0)
javascript:void(0)

Confusion Matrix

Randomization
Dataset

Batch
Size

True
Positive

True
Negative

False
Positive

False
Negative

False Negative + False
Positive

F1-Score
Average

Training
Time (s)

Randomization 1

16 1,233 1,227 73 67 140 95% 1,706

32 1,220 1,243 57 80 137 95% 1,347

64 1,217 1,248 52 83 135 95% 1,207

128 1,230 1,221 79 70 149 94% 1,130

Randomization 2

16 1,233 1,235 65 67 132 95% 1,585

32 1,233 1,234 66 67 133 95% 1,226

64 1,225 1,239 61 75 136 95% 1,107

128 1,236 1,209 91 64 155 94% 1,170

Randomization 3

16 1,245 1,245 55 55 110 96% 1,409

32 1,253 1,217 83 47 130 95% 1,166

64 1,239 1,238 62 61 123 95% 1,047

128 1,241 1,225 75 59 134 95% 1,067

Randomization 4

16 1,213 1,251 49 87 136 95% 1,525

32 1,212 1,243 57 88 145 94% 1,166

64 1,211 1,237 63 89 152 94% 1,005

128 1,227 1,210 90 73 163 94% 1,108

TABLE 2: Full summary of positive, true negative, false positive, false negative, F1-score, and
training time for each randomization dataset x batch size combination.

 Confusion Matrix

Batch Size True Positive True Negative False Positive False Negative F1-Score Average Training Time(s)

16 32 24 24 32 1.0% 297

32 41 26 26 41 1.0% 181

64 28 11 11 28 1.0% 202

128 14 16 16 14 1.0% 103

TABLE 3: Maximum-minimum value (delta, ∆) across the four randomized datasets was computed
for each outcome metric by batch size.

The false-negative deltas, or range of the observed false negatives, were 32, 41, 28, and 14 incorrect
predictions for analyses run with batch sizes 16, 32, 64, and 128, respectively. Maximum value ranges varied
by 58.2%, 87.2%, 45.9%, and 23.7% above the minimum values for each respective batch size. Notably, the
dispersion metrics computed in Table 3, when compared to the total 2,600 predictions on test data for each
randomized dataset made by models, varied by only small amounts. False-negative deltas computed in
Table 3, for example, were only 1.2%, 1.6%, 1.1%, and 0.5% for batch sizes of 16, 32, 64, and 128,
respectively. From Tables 2-3, we can see how the increase in incorrect model predictions with batch size is
somewhat linear, although not specifically isolated to false-positive or false-negative predictions. It should
be noted, however, from Table 3, that the dispersion of model prediction accuracy across datasets decreased

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 8 of 24

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

as batch size increased, or the dispersion predictions, both false and true, from randomization one through
four got smaller as batch size got larger. Another way to interpret this is that CNN models had more
consistent results with different randomized isolated test images as batch size got larger.

Total training time for model fitting with varying batch size, plotted for each dataset, demonstrated that
training time also decreased as batch size increased (Figure 7). Ultimately, it took less time to iterate and
train a model with the randomized blood smear datasets included in this study over 10 epochs as batch size
increased.

FIGURE 7: Total model training time for 10 epochs with varying batch
size, for each dataset.

Discussion
Training a CNN model is an iterative statistical exercise, and many parameters can be adjusted in the hyper-
optimization of a model. The goal in optimizing a model ultimately is to increase accuracy. Modifying batch
size as a parameter not only affects performance but also affects the memory usage and training speed of a
CNN. In this study, modifying batch size from 16 to 128 did not have a large impact mathematically on
overall model accuracy. In all four datasets, we observed a 1% decrease in F1-score as the batch size was
increased, with the Randomization_3 dropping from 96% to 95%, and the remaining three datasets dropping
from 95% to 94%.

Clinically, however, a 1% deviation at the population level can make a relatively significant impact on
outcomes. A 1% deviation across 1,000,000 patients, for example, can result in 10,000 people with incorrect
screening results. A major goal of developing a malaria screening tool with a CNN is to introduce scalable
screening in regions where malaria is endemic and access to physicians may be restricted. An applied
solution leveraging AI for screening might include a process wherein local skilled labor can obtain blood
samples, prepare slides, and upload the images to the cloud where a trained CNN model can screen in real-
time whether it believes the sample to indicate that the patient is infected or uninfected. The
implementation of such a solution reduces the need to locally maintain hardware for the model to run,
which in some parts of the world may be costly and hard to do. If a screening tool is used to flag patients as
at risk for being infected and speed up the time to diagnosis of malaria, false positives in a model can be
managed by subsequently checking all positive screening blood smears manually. The false negatives,
however, would fall through the gap as the screening tool would never indicate that the patient does in fact
need treatment.

While the 16 sets of batch size vs. datasets that were run demonstrated an overall increase in CNN model
accuracy and an increase in combined false positives and false negatives with decreasing batch size, the
trend was less visible with just false-negative model predictions (Table 3).

According to Kandel et al.’s study exploring the effect of batch size on the generalizability of CNNs, they
recommend using small batch sizes with low learning rates [19]. Additionally, Masters et al. in their study
state that small batch sizes had the best generalization performance for a given computational cost [25].

Results from this study suggest that the improved accuracy with smaller batch sizes in models with similar

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 9 of 24

javascript:void(0)
https://assets.cureus.com/uploads/figure/file/852454/lightbox_ef321c40990c11eeb50bad8066a6ad7c-Figure-7.png
javascript:void(0)
javascript:void(0)
javascript:void(0)

layer complexity not only has better implications for clinical outcomes but also the reduced memory
requirements for training means that model training can be achieved with more economical hardware. The
increased training time that occurs with smaller batch sizes can make model development time-consuming
and cumbersome, but this can be managed in clinical solutions by managing the trade-off with less frequent
retraining of a model. Once a model is trained and implemented clinically, the subsequent retraining is
something that needs to be managed over time. Retraining is the idea that as new images are collected over
time and datasets get larger, models can be updated to reflect the more current or comprehensive datasets.
While training or retraining a model with smaller batch sizes might take longer, once a model is trained the
implemented solution and subsequent screening for each patient is very quick and rapid. It would typically
just involve loading one or a few images into the trained model for assessment, so there is ultimately no
increase in time for screening experienced by the patient.

Limitations of the study
Limitations of the study include the availability of diverse images, while there were a lot of images the data
all came from one source and was already processed and cleaned, whereas clinically single-cell data might
not be as quickly and easily available. This dataset also represented a relatively small number of patients
overall. Additionally, in a clinical context, blood smear images that are most readily available would have
many cells on display as opposed to single cells, which have to be localized on the image and cropped.
Images with more cells may present a different set of optimization parameters for model development and
may have varying results for accuracy.

Another limitation of the study was the hardware and software constraints. We used Google Colab as our
environment for coding and analysis and were thus limited in computational resources available for free to
use in the study. More powerful computers with dedicated GPUs could be useful in expanding the scope of
the study and the complexity of the models used.

Implications for future research
Future research for CNN models needs to incorporate prospective real-time model performance in an
applied clinical setting. Much of the CNN research that is being conducted is on retrospective datasets with
images set aside for simulated real-time testing. The future of AI research needs to consider true prospective
real-time performance to provide greater feedback on clinical applications and performance in a clinical
setting. Training for these models should consider varying batch sizes for model optimization.

Conclusions
The results from our study suggest that the increased optimization of the proposed model can be achieved
when training with a batch size of 16 and that model accuracy may be increased with decreased batch size.
Our findings thus suggest that smaller batch sizes could be evaluated for improvements in accuracy to help
develop an AI model that could screen thin blood smears for malaria. In practice, smaller batch size training
may be more feasible because of reduced hardware demands. The subsequent increase in model training
time makes iterative training and retraining more cumbersome; however, as training can occur
independently of screening, it should not affect screening speed for patients in practice.

Appendices
Appendix 1: Python libraries
A comprehensive list of Python libraries and version numbers used in this study.

Package Version

absl-py 1.4.0

aiohttp 3.8.5

aiosignal 1.3.1

alabaster 0.7.13

albumentations 1.3.1

altair 4.2.2

anyio 3.7.1

appdirs 1.4.4

argon2-cffi 23.1.0

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 10 of 24

argon2-cffi-bindings 21.2.0

array-record 0.4.1

arviz 0.15.1

astropy 5.3.3

astunparse 1.6.3

async-timeout 4.0.3

attrs 23.1.0

audioread 3.0.0

autograd 1.6.2

Babel 2.12.1

backcall 0.2.0

beautifulsoup4 4.11.2

bleach 6.0.0

blinker 1.4

blis 0.7.10

blosc2 2.0.0

bokeh 3.2.2

bqplot 0.12.40

branca 0.6.0

build 1.0.3

CacheControl 0.13.1

cachetools 5.3.1

catalogue 2.0.9

certifi 2023.7.22

cffi 1.15.1

chardet 5.2.0

charset-normalizer 3.2.0

chex 0.1.7

click 8.1.7

click-plugins 1.1.1

cligj 0.7.2

cloudpickle 2.2.1

cmake 3.27.4.1

cmdstanpy 1.1.0

colorcet 3.0.1

colorlover 0.3.0

colour 0.1.5

community 1.0.0b1

confection 0.1.2

cons 0.4.6

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 11 of 24

contextlib2 21.6.0

contourpy 1.1.0

convertdate 2.4.0

cryptography 41.0.3

cufflinks 0.17.3

cvxopt 1.3.2

cvxpy 1.3.2

cycler 0.11.0

cymem 2.0.7

Cython 3.0.2

dask 2023.8.1

datascience 0.17.6

db-dtypes 1.1.1

dbus-python 1.2.18

debugpy 1.6.6

decorator 4.4.2

defusedxml 0.7.1

distributed 2023.8.1

distro 1.7.0

dlib 19.24.2

dm-tree 0.1.8

docutils 0.18.1

dopamine-rl 4.0.6

duckdb 0.8.1

earthengine-api 0.1.368

easydict 1.1

ecos 2.0.12

editdistance 0.6.2

eerepr 0.0.4

en-core-web-sm 3.6.0

entrypoints 0.4

ephem 4.1.4

et-xmlfile 1.1.0

etils 1.4.1

etuples 0.3.9

exceptiongroup 1.1.3

fastai 2.7.12

fastcore 1.5.29

fastdownload 0.0.7

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 12 of 24

fastjsonschema 2.18.0
fastprogress 1.0.3

fastrlock 0.8.2

filelock 3.12.2

Fiona 1.9.4.post1

firebase-admin 5.3.0

Flask 2.2.5

flatbuffers 23.5.26

flax 0.7.2

folium 0.14.0

fonttools 4.42.1

frozendict 2.3.8

frozenlist 1.4.0

fsspec 2023.6.0

future 0.18.3

gast 0.4.0

gcsfs 2023.6.0

GDAL 3.4.3

gdown 4.6.6

geemap 0.26.0

gensim 4.3.2

geocoder 1.38.1

geographiclib 2

geopandas 0.13.2

geopy 2.3.0

gin-config 0.5.0

glob2 0.7

google 2.0.3

google-api-core 2.11.1

google-api-python-client 2.84.0

google-auth 2.17.3

google-auth-httplib2 0.1.0

google-auth-oauthlib 1.0.0

google-cloud-bigquery 3.10.0

google-cloud-bigquery-connection 1.12.1

google-cloud-bigquery-storage 2.22.0

google-cloud-core 2.3.3

google-cloud-datastore 2.15.2

google-cloud-firestore 2.11.1

google-cloud-functions 1.13.2

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 13 of 24

google-cloud-language 2.9.1

google-cloud-storage 2.8.0

google-cloud-translate 3.11.3

google-colab 1.0.0

google-crc32c 1.5.0

google-pasta 0.2.0

google-resumable-media 2.6.0

googleapis-common-protos 1.60.0

googledrivedownloader 0.4

graphviz 0.20.1

greenlet 2.0.2

grpc-google-iam-v1 0.12.6

grpcio 1.57.0

grpcio-status 1.48.2

gspread 3.4.2

gspread-dataframe 3.3.1

gym 0.25.2

gym-notices 0.0.8

h5netcdf 1.2.0

h5py 3.9.0

holidays 0.32

holoviews 1.17.1

html5lib 1.1

httpimport 1.3.1

httplib2 0.22.0

humanize 4.7.0

hyperopt 0.2.7

idna 3.4

imageio 2.31.3

imageio-ffmpeg 0.4.8

imagesize 1.4.1

imbalanced-learn 0.10.1

imgaug 0.4.0

importlib-metadata 6.8.0

importlib-resources 6.0.1

imutils 0.5.4

inflect 7.0.0

iniconfig 2.0.0

intel-openmp 2023.2.0

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 14 of 24

ipyevents 2.0.2

ipyfilechooser 0.6.0

ipykernel 5.5.6

ipyleaflet 0.17.3

ipython 7.34.0

ipython-genutils 0.2.0

ipython-sql 0.5.0

ipytree 0.2.2

ipywidgets 7.7.1

itsdangerous 2.1.2

jax 0.4.14

jaxlib 0.4.14+cuda11.cudnn86

jeepney 0.7.1

jieba 0.42.1

Jinja2 3.1.2

joblib 1.3.2

jsonpickle 3.0.2

jsonschema 4.19.0

jsonschema-specifications 2023.7.1

jupyter-client 6.1.12

jupyter-console 6.1.0

jupyter_core 5.3.1

jupyter-server 1.24.0

jupyterlab-pygments 0.2.2

jupyterlab-widgets 3.0.8

kaggle 1.5.16

keras 2.13.1

keyring 23.5.0

kiwisolver 1.4.5

langcodes 3.3.0

launchpadlib 1.10.16

lazr.restfulclient 0.14.4

lazr.uri 1.0.6

lazy_loader 0.3

libclang 16.0.6

librosa 0.10.1

lightgbm 4.0.0

linkify-it-py 2.0.2

lit 16.0.6

llvmlite 0.39.1

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 15 of 24

locket 1.0.0

logical-unification 0.4.6

LunarCalendar 0.0.9

lxml 4.9.3

Markdown 3.4.4

markdown-it-py 3.0.0

MarkupSafe 2.1.3

matplotlib 3.7.1

matplotlib-inline 0.1.6

matplotlib-venn 0.11.9

mdit-py-plugins 0.4.0

mdurl 0.1.2

miniKanren 1.0.3

missingno 0.5.2

mistune 0.8.4

mizani 0.9.3

mkl 2023.2.0

ml-dtypes 0.2.0

mlxtend 0.22.0

more-itertools 10.1.0

moviepy 1.0.3

mpmath 1.3.0

msgpack 1.0.5

multidict 6.0.4

multipledispatch 1.0.0

multitasking 0.0.11

murmurhash 1.0.9

music21 9.1.0

natsort 8.4.0

nbclassic 1.0.0

nbclient 0.8.0

nbconvert 6.5.4

nbformat 5.9.2

nest-asyncio 1.5.7

networkx 3.1

nibabel 4.0.2

nltk 3.8.1

notebook 6.5.5

notebook_shim 0.2.3

numba 0.56.4

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 16 of 24

numexpr 2.8.5

numpy 1.23.5

oauth2client 4.1.3

oauthlib 3.2.2

opencv-contrib-python 4.8.0.76

opencv-python 4.8.0.76

opencv-python-headless 4.8.0.76

openpyxl 3.1.2

opt-einsum 3.3.0

optax 0.1.7

orbax-checkpoint 0.3.5

osqp 0.6.2.post8

packaging 23.1

pandas 1.5.3

pandas-datareader 0.10.0

pandas-gbq 0.17.9

pandocfilters 1.5.0

panel 1.2.2

param 1.13.0

parso 0.8.3

partd 1.4.0

pathlib 1.0.1

pathy 0.10.2

patsy 0.5.3

pexpect 4.8.0

pickleshare 0.7.5

Pillow 9.4.0

pip 23.1.2

pip-tools 6.13.0

platformdirs 3.10.0

plotly 5.15.0

plotnine 0.12.3

pluggy 1.3.0

polars 0.17.3

pooch 1.7.0

portpicker 1.5.2

prefetch-generator 1.0.3

preshed 3.0.8

prettytable 3.8.0

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 17 of 24

proglog 0.1.10

progressbar2 4.2.0

prometheus-client 0.17.1

promise 2.3

prompt-toolkit 3.0.39

prophet 1.1.4

proto-plus 1.22.3

protobuf 3.20.3

psutil 5.9.5

psycopg2 2.9.7

ptyprocess 0.7.0

py-cpuinfo 9.0.0

py4j 0.10.9.7

pyarrow 9.0.0

pyasn1 0.5.0

pyasn1-modules 0.3.0

pycocotools 2.0.7

pycparser 2.21

pyct 0.5.0

pydantic 1.10.12

pydata-google-auth 1.8.2

pydot 1.4.2

pydot-ng 2.0.0

pydotplus 2.0.2

PyDrive 1.3.1

PyDrive2 1.6.3

pyerfa 2.0.0.3

pygame 2.5.1

Pygments 2.16.1

PyGObject 3.42.1

PyJWT 2.3.0

pymc 5.7.2

PyMeeus 0.5.12

pymystem3 0.2.0

PyOpenGL 3.1.7

pyOpenSSL 23.2.0

pyparsing 3.1.1

pyperclip 1.8.2

pyproj 3.6.0

pyproject_hooks 1.0.0

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 18 of 24

pyshp 2.3.1

PySocks 1.7.1

pytensor 2.14.2

pytest 7.4.1

python-apt 0.0.0

python-box 7.1.1

python-dateutil 2.8.2

python-louvain 0.16

python-slugify 8.0.1

python-utils 3.7.0

pytz 2023.3.post1

pyviz_comms 3.0.0

PyWavelets 1.4.1

PyYAML 6.0.1

pyzmq 23.2.1

qdldl 0.1.7.post0

qudida 0.0.4

ratelim 0.1.6

referencing 0.30.2

regex 2023.6.3

requests 2.31.0

requests-oauthlib 1.3.1

requirements-parser 0.5.0

rich 13.5.2

rpds-py 0.10.2

rpy2 3.4.2

rsa 4.9

scikit-image 0.19.3

scikit-learn 1.2.2

scipy 1.11.2

scooby 0.7.2

scs 3.2.3

seaborn 0.12.2

SecretStorage 3.3.1

Send2Trash 1.8.2

setuptools 67.7.2

shapely 2.0.1

six 1.16.0

sklearn-pandas 2.2.0

smart-open 6.4.0

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 19 of 24

sniffio 1.3.0

snowballstemmer 2.2.0

sortedcontainers 2.4.0

soundfile 0.12.1

soupsieve 2.5

soxr 0.3.6

spacy 3.6.1

spacy-legacy 3.0.12

spacy-loggers 1.0.4

Sphinx 5.0.2

sphinxcontrib-applehelp 1.0.7

sphinxcontrib-devhelp 1.0.5

sphinxcontrib-htmlhelp 2.0.4

sphinxcontrib-jsmath 1.0.1

sphinxcontrib-qthelp 1.0.6

sphinxcontrib-serializinghtml 1.1.9

SQLAlchemy 2.0.20

sqlparse 0.4.4

srsly 2.4.7

statsmodels 0.14.0

sympy 1.12

tables 3.8.0

tabulate 0.9.0

tbb 2021.10.0

tblib 2.0.0

tenacity 8.2.3

tensorboard 2.13.0

tensorboard-data-server 0.7.1

tensorflow 2.13.0

tensorflow-datasets 4.9.2

tensorflow-estimator 2.13.0

tensorflow-gcs-config 2.13.0

tensorflow-hub 0.14.0

tensorflow-io-gcs-filesystem 0.33.0

tensorflow-metadata 1.14.0

tensorflow-probability 0.20.1

tensorstore 0.1.41

termcolor 2.3.0

terminado 0.17.1

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 20 of 24

text-unidecode 1.3

textblob 0.17.1

tf-slim 1.1.0

thinc 8.1.12

threadpoolctl 3.2.0

tifffile 2023.8.30

tinycss2 1.2.1

toml 0.10.2

tomli 2.0.1

toolz 0.12.0

torch 2.0.1+cu118

torchaudio 2.0.2+cu118

torchdata 0.6.1

torchsummary 1.5.1

torchtext 0.15.2

torchvision 0.15.2+cu118

tornado 6.3.2

tqdm 4.66.1

traitlets 5.7.1

traittypes 0.2.1

triton 2.0.0

tweepy 4.13.0

typer 0.9.0

types-setuptools 68.2.0.0

typing_extensions 4.5.0

tzlocal 5.0.1

uc-micro-py 1.0.2

uritemplate 4.1.1

urllib3 2.0.4

vega-datasets 0.9.0

wadllib 1.3.6

wasabi 1.1.2

wcwidth 0.2.6

webcolors 1.13

webencodings 0.5.1

websocket-client 1.6.2

Werkzeug 2.3.7

wheel 0.41.2

widgetsnbextension 3.6.5

wordcloud 1.9.2

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 21 of 24

wrapt 1.15.0

xarray 2023.7.0

xarray-einstats 0.6.0

xgboost 1.7.6

xlrd 2.0.1

xyzservices 2023.7.0

yarl 1.9.2

yellowbrick 1.5

yfinance 0.2.28

zict 3.0.0

zipp 3.16.2

TABLE 4: Comprehensive list of Python libraries and version numbers used in this study.

Appendix 2: Randomization Python scripts

Parasitized Randomized Selection of Test Images:

import numpy as np

import os

import random

#set directories

directory = str('/Users/rohitmuralidhar/Desktop/Research_Data/Cell_Randomization_4/Parasitized')

target_directory = str('/Users/rohitmuralidhar/Desktop/Research_Data/Cell_Randomization_4/ParasitizedTEST')

list all files in dir that are an image

files = [f for f in os.listdir(directory) if f.endswith('.png')]

select a specified number of files randomly

random_files = random.sample(files, int(1300))

move the randomly selected images by renaming directory

for random_file_name in random_files:

 os.rename(directory+'/'+random_file_name, target_directory+'/'+random_file_name)

 continue

Uninfected Randomized Selection of Test Images:

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 22 of 24

import numpy as np

import os

import random

#set directories

directory = str('/Users/rohitmuralidhar/Desktop/Research_Data/Cell_Randomization_4/Uninfected')

target_directory = str('/Users/rohitmuralidhar/Desktop/Research_Data/Cell_Randomization_4/UninfectedTEST')

list all files in dir that are an image

files = [f for f in os.listdir(directory) if f.endswith('.png')]

select a specified number of files randomly

random_files = random.sample(files, int(1300))

move the randomly selected images by renaming directory

for random_file_name in random_files:

 os.rename(directory+'/'+random_file_name, target_directory+'/'+random_file_name)

 continue

TABLE 5: Randomization scripts.

Additional Information
Author Contributions
All authors have reviewed the final version to be published and agreed to be accountable for all aspects of the
work.

Concept and design: Rohit Muralidhar, Michelle L. Demory, Marc M. Kesselman

Acquisition, analysis, or interpretation of data: Rohit Muralidhar

Drafting of the manuscript: Rohit Muralidhar

Critical review of the manuscript for important intellectual content: Rohit Muralidhar, Michelle L.
Demory, Marc M. Kesselman

Supervision: Michelle L. Demory, Marc M. Kesselman

Disclosures
Human subjects: All authors have confirmed that this study did not involve human participants or tissue.
Animal subjects: All authors have confirmed that this study did not involve animal subjects or tissue.
Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the
following: Payment/services info: All authors have declared that no financial support was received from
any organization for the submitted work. Financial relationships: All authors have declared that they have
no financial relationships at present or within the previous three years with any organizations that might
have an interest in the submitted work. Other relationships: All authors have declared that there are no
other relationships or activities that could appear to have influenced the submitted work.

Acknowledgements
We would like to express our sincere gratitude to Dr. Robin Jacobs for her guidance and manuscript editing.

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 23 of 24

Her expertise and insightful suggestions have been valuable throughout the writing process.

References
1. World malaria report 2022. (2022). Accessed: April 29, 2024: https://www.who.int/teams/global-malaria-

programme/reports/world-malaria-report-2022.
2. World malaria report 2021. (2021). Accessed: April 29, 2024: https://www.who.int/teams/global-malaria-

programme/reports/world-malaria-report-2021.
3. Su XZ, Lane KD, Xia L, Sá JM, Wellems TE: Plasmodium genomics and genetics: new insights into malaria

pathogenesis, drug resistance, epidemiology, and evolution. Clin Microbiol Rev. 2019,
32:10.1128/CMR.00019-19

4. Trampuz A, Jereb M, Muzlovic I, Prabhu RM: Clinical review: severe malaria. Crit Care. 2003, 7:315.
10.1186/cc2183

5. Garcia LS: Malaria. Clin Lab Med. 2010, 30:93-129. 10.1016/j.cll.2009.10.001
6. Moxon CA, Gibbins MP, McGuinness D, Milner DA Jr, Marti M: New insights into malaria pathogenesis .

Annu Rev Pathol. 2020, 15:315-43. 10.1146/annurev-pathmechdis-012419-032640
7. Basu S, Sahi PK: Malaria: an update . Indian J Pediatr. 2017, 84:521-8. 10.1007/s12098-017-2332-2
8. Stanley J: Malaria. Emerg Med Clin North Am. 1997, 15:113-55. 10.1016/s0733-8627(05)70288-1
9. Kundu R, Ganguly N, Ghosh TK, Choudhury P, Shah RC: Diagnosis and management of malaria in children:

recommendations and IAP plan of action. Indian Pediatr. 2005, 42:1101-14.
10. Murray CK, Gasser RA Jr, Magill AJ, Miller RS: Update on rapid diagnostic testing for malaria . Clin Microbiol

Rev. 2008, 21:97-110. 10.1128/CMR.00035-07
11. Moyeh MN, Ali IM, Njimoh DL, et al.: Comparison of the accuracy of four malaria diagnostic methods in a

high transmission setting in coastal Cameroon. J Parasitol Res. 2019, 2019: 10.1155/2019/1417967
12. Lou J, Lucas R, Grau GE: Pathogenesis of cerebral malaria: recent experimental data and possible

applications for humans. Clin Microbiol Rev. 2001, 14:810-20. 10.1128/CMR.14.4.810-820.2001
13. Kain KC, Harrington MA, Tennyson S, Keystone JS: Imported malaria: prospective analysis of problems in

diagnosis and management. Clin Infect Dis. 1998, 27:142-9. 10.1086/514616
14. Torres K, Bachman CM, Delahunt CB, et al.: Automated microscopy for routine malaria diagnosis: a field

comparison on Giemsa-stained blood films in Peru. Malar J. 2018, 17:339. 10.1186/s12936-018-2493-0
15. Tek FB, Dempster AG, Kale I: Computer vision for microscopy diagnosis of malaria . Malar J. 2009, 8:153.

10.1186/1475-2875-8-153
16. What is computer vision?. (2019). Accessed: October 8, 2023: https://www.ibm.com/topics/computer-vision.
17. D'Antoni F, Russo F, Ambrosio L, et al.: Artificial intelligence and computer vision in low back pain: a

systematic review. Int J Environ Res Public Health. 2021, 18: 10.3390/ijerph182010909
18. Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK: Medical image analysis using

convolutional neural networks: a review. J Med Syst. 2018, 42:226. 10.1007/s10916-018-1088-1
19. Kandel I, Castelli M: The effect of batch size on the generalizability of the convolutional neural networks on

a histopathology dataset. ICT Express. 2020, 6:312-5. 10.1016/j.icte.2020.04.010
20. Radiuk P: Impact of training set batch size on the performance of convolutional neural networks for diverse

datasets. Inf Technol Manag Sci. 2017, 20:20-24. 10.1515/itms-2017-0003
21. Understanding batch size in TensorFlow. (2023). Accessed: October 8, 2023:

https://saturncloud.io/blog/understanding-batch-size-in-tensorflow/..
22. Kassim YM, Palaniappan K, Yang F, et al.: Clustering-based dual deep learning architecture for detecting

red blood cells in malaria diagnostic smears. IEEE J Biomed Health Inform. 2021, 25:1735-46.
10.1109/JBHI.2020.3034863

23. Takahashi K, Yamamoto K, Kuchiba A, Shintani A, Koyama T: Hypothesis testing procedure for binary and
multi-class F(1) -scores in the paired design. Stat Med. 2023, 42:4177-92. 10.1002/sim.9853

24. Shah SS, Jamil N, Khan AU: Memory visualization-based malware detection technique . Sensors (Basel). 2022,
22:10.3390/s22197611

25. Masters D, Luschi C: Revisiting small batch training for deep neural networks. arXiv preprint. 2018,
1804.07612:10.48550/arXiv.1804.07612

2024 Muralidhar et al. Cureus 16(5): e60224. DOI 10.7759/cureus.60224 24 of 24

https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022
https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022
https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021
https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021
https://dx.doi.org/10.1128/CMR.00019-19
https://dx.doi.org/10.1128/CMR.00019-19
https://dx.doi.org/10.1186/cc2183
https://dx.doi.org/10.1186/cc2183
https://dx.doi.org/10.1016/j.cll.2009.10.001
https://dx.doi.org/10.1016/j.cll.2009.10.001
https://dx.doi.org/10.1146/annurev-pathmechdis-012419-032640
https://dx.doi.org/10.1146/annurev-pathmechdis-012419-032640
https://dx.doi.org/10.1007/s12098-017-2332-2
https://dx.doi.org/10.1007/s12098-017-2332-2
https://dx.doi.org/10.1016/s0733-8627(05)70288-1
https://dx.doi.org/10.1016/s0733-8627(05)70288-1
https://www.indianpediatrics.net/nov2005/1101.pdf
https://dx.doi.org/10.1128/CMR.00035-07
https://dx.doi.org/10.1128/CMR.00035-07
https://dx.doi.org/10.1155/2019/1417967
https://dx.doi.org/10.1155/2019/1417967
https://dx.doi.org/10.1128/CMR.14.4.810-820.2001
https://dx.doi.org/10.1128/CMR.14.4.810-820.2001
https://dx.doi.org/10.1086/514616
https://dx.doi.org/10.1086/514616
https://dx.doi.org/10.1186/s12936-018-2493-0
https://dx.doi.org/10.1186/s12936-018-2493-0
https://dx.doi.org/10.1186/1475-2875-8-153
https://dx.doi.org/10.1186/1475-2875-8-153
https://www.ibm.com/topics/computer-vision
https://www.ibm.com/topics/computer-vision
https://dx.doi.org/10.3390/ijerph182010909
https://dx.doi.org/10.3390/ijerph182010909
https://dx.doi.org/10.1007/s10916-018-1088-1
https://dx.doi.org/10.1007/s10916-018-1088-1
https://dx.doi.org/10.1016/j.icte.2020.04.010
https://dx.doi.org/10.1016/j.icte.2020.04.010
https://dx.doi.org/10.1515/itms-2017-0003
https://dx.doi.org/10.1515/itms-2017-0003
https://saturncloud.io/blog/understanding-batch-size-in-tensorflow/
https://saturncloud.io/blog/understanding-batch-size-in-tensorflow/
https://dx.doi.org/10.1109/JBHI.2020.3034863
https://dx.doi.org/10.1109/JBHI.2020.3034863
https://dx.doi.org/10.1002/sim.9853
https://dx.doi.org/10.1002/sim.9853
https://dx.doi.org/10.3390/s22197611
https://dx.doi.org/10.3390/s22197611
https://dx.doi.org/10.48550/arXiv.1804.07612
https://dx.doi.org/10.48550/arXiv.1804.07612

	Exploring the Impact of Batch Size on Deep Learning Artificial Intelligence Models for Malaria Detection
	Abstract
	Introduction
	Methods
	Results
	Conclusion

	Introduction
	Diagnostic tests for malaria
	The role of artificial intelligence (AI) in diagnostic screening

	Materials And Methods
	Dataset description
	FIGURE 1: Random selection of images from the 13,779 parasitized and 13,779 unparasitized images, along with corresponding labels, after resizing and importing for use in models.

	Analysis tools
	Data randomization
	FIGURE 2: Left: number of parasitized (n = 1,300) and uninfected (n = 1,300) images set aside for model testing. Right: graphical depiction of the number of parasitized (n = 12,479) and uninfected (n = 12,479) images set aside for model training.

	Analysis
	FIGURE 3: Overview of study design, depicting randomization of datasets, and the four specific batch sizes utilized in CNN models for each dataset.

	Results
	FIGURE 4: Left: F1-scores across batch sizes for each randomized dataset. Right: Total false-positive and false-negative CNN model predictions across batch size for each randomized dataset.
	TABLE 1: Confusion matrix, F1-score, and training time by batch size, after averaging results for randomized datasets 1-4.
	FIGURE 5: Stacked bar chart of confusion matrix data for each randomization vs. batch size combination analyzed in this study.
	FIGURE 6: False-negative results for each dataset, with varying batch size.
	TABLE 2: Full summary of positive, true negative, false positive, false negative, F1-score, and training time for each randomization dataset x batch size combination.
	TABLE 3: Maximum-minimum value (delta, ∆) across the four randomized datasets was computed for each outcome metric by batch size.
	FIGURE 7: Total model training time for 10 epochs with varying batch size, for each dataset.

	Discussion
	Limitations of the study
	Implications for future research

	Conclusions
	Appendices
	Appendix 1: Python libraries
	TABLE 4: Comprehensive list of Python libraries and version numbers used in this study.

	Appendix 2: Randomization Python scripts
	TABLE 5: Randomization scripts.

	Additional Information
	Author Contributions
	Disclosures
	Acknowledgements

	References

