Received 12/01/2023 Review began 01/07/2024 Review ended 01/18/2024 Published 01/29/2024

© Copyright 2024

Saini et al. This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

The Impact of Topical Application of Platelet-Rich Fibrin on Graft Survival in Surgeries for Chronic Otitis Media

Saurabh Saini 1 , Saquib Reyaz Khan 1 , Masuram Bharath Kumar 2 , Kunal Singh 1 , Priyanshu Pandey 1

1. Otolaryngology, Varun Arjun Medical College & Rohilkhand Hospital, Shahjahanpur, IND 2. Clinical Pharmacology, Varun Arjun Medical College & Rohilkhand Hospital, Shahjahanpur, IND

Corresponding author: Saquib Reyaz Khan, saquibkhan366@gmail.com

Abstract

Objective: This study aims to evaluate the efficacy of platelet-rich fibrin (PRF) application in tympanoplasty procedures for patients with chronic otitis media (COM), assessing its influence on graft survival and healing time.

Methods: In this prospective interventional study, conducted between January 2022 and June 2023, 80 patients diagnosed with COM were enrolled and divided into two groups. Group A underwent standard tympanic membrane repair using temporal fascia grafts (TFG), while Group B received TFG with adjunctive PRF application. The patients were observed and assessed over a 20-week postoperative period.

Results: The study showed a significant enhancement in graft survival rates in Group B (TFG+PRF), with only one residual perforation compared to seven in Group A (TFG alone) at 20 weeks (p=0.02534). Furthermore, Group B patients experienced faster healing, achieving 97.5% graft integrity at 10 and 20 weeks, in contrast to Group A's 87.5%.

Conclusion: The application of PRF in tympanoplasty procedures for COM notably enhances graft stability and expedites the healing process. These findings suggest that PRF can be a valuable adjunct in otolaryngological surgeries, offering potential improvements in patient outcomes and surgical efficacy.

Categories: Internal Medicine, Otolaryngology, Therapeutics

 $\textbf{Keywords:} \ \text{healing time, graft survival, chronic otitis media (com), tympanoplasty, platelet-rich fibrin (prf) \\$

Introduction

Chronic otitis media (COM) represents a significant global health challenge, impacting a substantial portion of the population with its persistent and debilitating symptoms. This condition is primarily characterized by a perforated tympanic membrane and continuous discharge that persists for over three months, often necessitating surgical intervention for effective management [1]. The standard surgical treatments for COM, which include tympanoplasty, cortical mastoidectomy, and modified radical mastoidectomy, are well-established in clinical practice [2]. However, despite advancements in surgical techniques, the management of COM continues to pose challenges, particularly in terms of graft survival, healing time, and postoperative complications.

The genesis of this research is rooted in the emerging applications of platelet-rich fibrin (PRF) in various surgical fields. PRF, a second-generation platelet concentrate, has garnered attention for its role in wound healing and tissue regeneration [3]. Recent studies have highlighted the potential of PRF to enhance graft survival and expedite healing in various surgical contexts [4]. This promising development in the use of PRF has opened new avenues for its application in otologic surgeries, particularly in the management of COM. However, the specific application of PRF in ear surgeries, especially in the context of COM, still needs to be explored and warrants further investigation.

The rationale for this research is anchored in the potential of PRF to improve surgical outcomes in COM. The high prevalence of COM, coupled with the limitations of current surgical treatments, underscores the urgent need for innovative approaches that can enhance patient outcomes. The application of PRF in COM surgeries could potentially lead to improved graft uptake rates, reduced healing times, and fewer postoperative complications. Such advancements could significantly impact the standard of care for patients suffering from COM, offering a more effective and efficient treatment pathway.

The primary objective of this study is to investigate the impact of topical application of PRF on graft survival in surgeries for COM. By focusing on this innovative approach, the study aims to provide empirical evidence that could potentially revolutionize the standard surgical procedures for treating COM. The exploration of PRF's efficacy in this context is timely and critical in advancing our understanding of its potential benefits

in otologic surgeries. This research seeks to contribute to the body of knowledge in otorhinolaryngology and improve surgical outcomes for patients suffering from COM, thereby addressing a significant gap in current medical practice.

Materials And Methods

This prospective interventional study was conducted at the Department of Otorhinolaryngology, Varun Arjun Medical College, Shahjahanpur, Uttar Pradesh, India, from January 2022 to June 2023. Eighty patients diagnosed with COM were enrolled based on their written informed consent and willingness for regular follow-up. The sample size of 80 was calculated for quantifiable variables and equally divided into two groups: Group A consisted of 40 patients undergoing tympanoplasty without PRF, and Group B comprised 40 patients receiving tympanoplasty with autologous PRF.

The study included participants aged between 10 and 60 years who had tympanic membrane perforations for at least 12 weeks without active COM. Individuals below 10 or above 60 years of age, those with chronic illnesses like diabetes mellitus, tuberculosis, bleeding disorders, and cases of COM with complications were excluded from the study. For the preparation of autologous PRF, approximately 5 mL of whole venous blood was collected from each participant's antecubital vein into a sterile vacutainer tube without anticoagulant. Immediate centrifugation at 3000 rpm for 15 minutes yielded three layers: red blood cells, fibrin clot, and cellular plasma. The middle fraction was collected (Figure 1) and transformed into a thin sheet using graft press forceps.

FIGURE 1: Autologous platelet-rich fibrin obtained by centrifugation.

During the surgical procedure, PRF was applied to the edges of the perforation following graft placement. Subsequently, the tympanomeatal flap was repositioned, and the ear canal was packed with gelfoam. In terms of postoperative care, patients received oral antibiotics for the first week and topical antibiotics for the subsequent week. Follow-ups were conducted every 7-15 days for one month, and then monthly for two to three months.

Surgical outcomes were assessed through endoscopic and otoscopic examinations at each patient visit. For statistical analysis, the data were processed using IBM SPSS Statistics for Windows, Version 25 (Released 2017; IBM Corp., Armonk, New York). The chi-square test was employed for categorical variables, and the independent t-test was used for continuous variables. The Fisher exact test was applied in cases where the assumption of independence was not as rigorously met as in categorical tests. Variations in the data were expressed as the mean \pm standard deviation (SD).

Results

In the study, patient demographics and clinical characteristics were similar across both groups (temporal fascia grafts (TFG) and TFG+PRF), with no significant differences in age, gender, perforation side, or perforation type (P-values > 0.05). The average age of patients in both groups was around 32 years, and the distribution of gender, perforation side, and type was comparable between the two groups (Table 1).

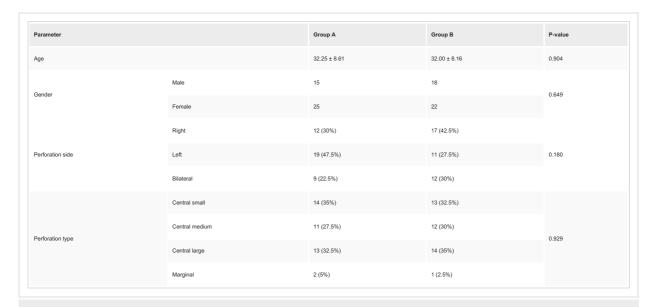


TABLE 1: Demographics and clinical characteristics of the patients.

At 20 weeks post-operation, seven cases had residual perforations in the TFG alone group, compared to one case in the TFG+PRF group. The p-value was 0.02534, indicating statistical significance (Table 2).

TABLE 2: Postoperative graft survival rates.

For small central perforations, both groups showed 100% graft integrity. In medium and large central perforations, Group B demonstrated higher graft survival rates (medium: 100% vs. 81.8%, large: 92.9% vs. 61.5%), although these differences were not statistically significant (p-values 0.770 and 0.569, respectively) (Table 3).

TABLE 3: Graft perforation and integrity by perforation type.

Discussion

The integration of PRF in tympanoplasty for COM represents a novel approach in otologic surgery, potentially addressing some limitations of traditional surgical methods. Our study indicates an improvement

in graft survival rates with PRF, particularly at 10 and 20 weeks post-operation. This finding is in line with burgeoning research on PRF's role in tissue regeneration and wound healing, as demonstrated in various surgical fields [5-7].

However, the study's limitations, including its sample size and lack of control for variables such as surgical technique variations and postoperative care, necessitate a cautious interpretation of the results. These limitations highlight the need for more extensive, randomized controlled trials to validate the efficacy of PRF in tympanoplasty and to establish standardized protocols for its use [8,9].

The study's findings suggest that the size or type of tympanic membrane perforation does not significantly influence PRF's effectiveness. This observation aligns with the understanding of PRF's biological properties, which are thought to be the primary contributors to its beneficial effects, irrespective of the physical characteristics of the perforation [10,11].

The role of PRF in enhancing graft survival could be attributed to its ability to release molecules like von Willebrand factor, P-selectin, fibronectin, vascular endothelial growth factor (VEGF), platelet-derived endothelial growth factor (PDEGF), vitronectin, and fibrinogen that promote tissue regeneration and angiogenesis, as well as its potential to modulate inflammatory responses, which are crucial in the healing process [12,13]. These properties of PRF may explain the improved outcomes observed in the TFG+PRF group in our study.

Despite these promising findings, it is imperative to approach the results with caution. The positive impact of PRF observed in this study is a preliminary step in understanding its role in tympanoplasty. Further research is needed to explore the long-term effects of PRF on patient outcomes and to investigate its mechanism of action in the context of tympanic membrane repair [14].

Conclusions

The addition of PRF in tympanoplasty for COM appears to enhance graft survival rates and expedite the healing process, particularly in the medium-term postoperative period. However, these findings should be interpreted considering the study's limitations. Future research should focus on larger-scale studies to confirm these results and to further elucidate the role of PRF in otologic surgery.

Additional Information

Author Contributions

All authors have reviewed the final version to be published and agreed to be accountable for all aspects of the work.

Concept and design: Saquib Reyaz Khan, Saurabh Saini, Kunal Singh, Priyanshu Pandey

Acquisition, analysis, or interpretation of data: Saquib Reyaz Khan, Saurabh Saini, Masuram Bharath Kumar, Kunal Singh, Priyanshu Pandey

Drafting of the manuscript: Saquib Reyaz Khan, Saurabh Saini, Masuram Bharath Kumar, Kunal Singh, Priyanshu Pandey

Critical review of the manuscript for important intellectual content: Saquib Reyaz Khan, Saurabh Saini, Kunal Singh, Priyanshu Pandey

Supervision: Saquib Reyaz Khan, Saurabh Saini, Kunal Singh, Priyanshu Pandey

Disclosures

Human subjects: Consent was obtained or waived by all participants in this study. Institutional Ethics Committee at Varun Arjun Medical College & Rohilkhand Hospital issued approval NA. Animal subjects: All authors have confirmed that this study did not involve animal subjects or tissue. Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

 Mittal R, Lisi CV, Gerring R, et al.: Current concepts in the pathogenesis and treatment of chronic suppurative otitis media. J Med Microbiol. 2015, 64:1103-16. 10.1099/jmm.0.000155

- Haynes DS, Harley DH: Surgical management of chronic otitis media: beyond tympanotomy tubes.
 Otolaryngol Clin North Am. 2002, 35:827-39. 10.1016/s0030-6665(02)00055-5
- Patel GK, Gaekwad SS, Gujjari SK, Veerendra Kumar SC: Platelet-rich fibrin in regeneration of intrabony defects: a randomized controlled trial. J Periodontol. 2017, 88:1192-9. 10.1902/jop.2017.130710
- Saluja H, Dehane V, Mahindra U: Platelet-Rich fibrin: A second generation platelet concentrate and a new friend of oral and maxillofacial surgeons. Ann Maxillofac Surg. 2011, 1:53-7. 10.4103/2231-0746.83158
- Choukroun J, Adda F, Schoeffler C, Vervelle A: The opportunity in perio-implantology: the PRF. Implantodontie. 2001, 42:55-62.
- Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, Gogly B: Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006, 101:e37-44. 10.1016/j.tripleo.2005.07.008
- Anitua E, Andia I, Ardanza B, Nurden P, Nurden AT: Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost. 2004, 91:4-15. 10.1160/TH03-07-0440
- Gür ÖE, Ensari N, Öztürk MT, Boztepe OF, Gün T, Selçuk ÖT, Renda L: Use of a platelet-rich fibrin membrane to repair traumatic tympanic membrane perforations: a comparative study. Acta Otolaryngol. 2016, 136:1017-23. 10.1080/00016489.2016.1183042
- Taneja MK: Role of platelet rich plasma in tympanoplasty . Indian J Otolaryngol Head Neck Surg. 2020, 72:247-50. 10.1007/s12070-020-01815-y
- Gassling VL, Açil Y, Springer IN, Hubert N, Wiltfang J: Platelet-rich plasma and platelet-rich fibrin in human cell culture. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009, 108:48-55.
 10.1016/j.tripleo.2009.02.007
- Ghanaati S, Booms P, Orlowska A, et al.: Advanced platelet-rich fibrin: a new concept for cell-based tissue engineering by means of inflammatory cells. J Oral Implantol. 2014, 40:679-89. 10.1563/aaid-joi-D-14-00138
- Eshghpour M, Dastmalchi P, Nekooei AH, Nejat A: Effect of platelet-rich fibrin on frequency of alveolar osteitis following mandibular third molar surgery: a double-blinded randomized clinical trial. J Oral Maxillofac Surg. 2014, 72:1463-7. 10.1016/j.joms.2014.03.029
- 13. Tozum TF, Demiralp B: Platelet-rich plasma: a promising innovation in dentistry . J Can Dent Assoc. 2003, 69:664.
- Bielecki T, Dohan Ehrenfest DM: Platelet-rich plasma (PRP) and platelet-rich fibrin (PRF): surgical adjuvants, preparations for in situ regenerative medicine and tools for tissue engineering. Curr Pharm Biotechnol. 2012, 13:1121-30. 10.2174/138920112800624292