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Abstract
Background and objective
The current periprosthetic joint infection (PJI) diagnostic guidelines require clinicians to interpret and
integrate multiple criteria into a complex scoring system. Also, PJI classifications are often inconclusive,
failing to provide a clinical diagnosis. Machine learning (ML) models could be leveraged to reduce reliance
on these complex systems and thereby reduce diagnostic uncertainty. This study aimed to develop an ML
algorithm using synovial fluid (SF) test results to establish a PJI probability score.

Methods
We used a large clinical laboratory's dataset of SF samples, aspirated from patients with hip or knee
arthroplasty as part of a PJI evaluation. Patient age and SF biomarkers [white blood cell count, neutrophil
percentage (%PMN), red blood cell count, absorbance at 280 nm wavelength, C-reactive protein (CRP),
alpha-defensin (AD), neutrophil elastase, and microbial antigen (MID) tests] were used for model
development. Data preprocessing, principal component analysis, and unsupervised clustering (K-means)
revealed four clusters of samples that naturally aggregated based on biomarker results. Analysis of the
characteristics of each of these four clusters revealed three clusters (n=13,133) with samples having
biomarker results typical of a PJI-negative classification and one cluster (n=4,032) with samples having
biomarker results typical of a PJI-positive classification. A decision tree model, trained and tested
independently of external diagnostic rules, was then developed to match the classification determined by the
unsupervised clustering. The performance of the model was assessed versus a modified 2018 International
Consensus Meeting (ICM) criteria, in both the test cohort and an independent unlabeled validation set of
5,601 samples. The SHAP (SHapley Additive exPlanations) method was used to explore feature importance.

Results
The ML model showed an area under the curve of 0.993, with a sensitivity of 98.8%, specificity of 97.3%,
positive predictive value (PPV) of 92.9%, and negative predictive value (NPV) of 99.8% in predicting the
modified 2018 ICM diagnosis among test set samples. The model maintained its diagnostic accuracy in the
validation cohort, yielding 99.1% sensitivity, 97.1% specificity, 91.9% PPV, and 99.9% NPV. The model's
inconclusive rate (diagnostic probability between 20-80%) in the validation cohort was only 1.3%, lower
than that observed with the modified 2018 ICM PJI classification (7.4%; p<0.001).

The SHAP analysis found that AD was the most important feature in the model, exhibiting dominance among
>95% of "infected" and "not infected" diagnoses. Other important features were the sum of the MID test
panel, %PMN, and SF-CRP.

Conclusions
Although defined methods and tools for diagnosis of PJI using multiple biomarker criteria are available, they
are not consistently applied or widely implemented. There is a need for algorithmic interpretation of these
biomarkers to enable consistent interpretation of the results to drive treatment decisions. The new model,
using clinical parameters measured from a patient’s SF sample, renders a preoperative probability score for
PJI which performs well compared to a modified 2018 ICM definition. Taken together with other clinical
signs, this model has the potential to increase the accuracy of clinical evaluations and reduce the rate of
inconclusive classification, thereby enabling more appropriate and expedited downstream treatment

1 1 1 2 2 3

1 4, 5

 
Open Access Original
Article  DOI: 10.7759/cureus.51036

How to cite this article
Paranjape P R, Thai-Paquette V, Miamidian J L, et al. (December 24, 2023) Achieving High Accuracy in Predicting the Probability of Periprosthetic
Joint Infection From Synovial Fluid in Patients Undergoing Hip or Knee Arthroplasty: The Development and Validation of a Multivariable Machine
Learning Algorithm. Cureus 15(12): e51036. DOI 10.7759/cureus.51036

https://www.cureus.com/users/653605-pearl-paranjape
https://www.cureus.com/users/526093-van-thai-paquette
https://www.cureus.com/users/653607-john-l-miamidian
https://www.cureus.com/users/653609-jim-parr
https://www.cureus.com/users/653608-eyal-a-kazin
https://www.cureus.com/users/436014-alex-mclaren
https://www.cureus.com/users/526092-krista-toler
https://www.cureus.com/users/392205-carl-deirmengian


decisions.
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Introduction
Periprosthetic joint infection (PJI) can be difficult to diagnose following total joint arthroplasty (TJA). With a
reported incidence ranging from 1 to 2% following primary procedures and 3 to 10% following revision
arthroplasty, PJI is the leading cause of total knee arthroplasty revision and the third most common cause of
total hip arthroplasty revision [1]. The Musculoskeletal Infection Society (MSIS) first proposed a definition
for PJI in 2011 with a multiple-criterion diagnostic scoring system [2]. Since then, the concept of PJI
definition and scoring systems has undergone iterative revisions through the International Consensus
Meeting (ICM), European Bone and Joint Infection Society (EBJIS), Infectious Diseases Society of America
(IDSA), and others [2-6]. The 2018 ICM definition assigns a points-based score to patients using multiple
preoperative and intraoperative biomarker thresholds. Based on the total score, the patient is classified as
"infected", "not infected", or "inconclusive" [4]. Although academic surgeons familiar with PJI research may
be able to apply the 2018 ICM scoring system, its complexity may hinder widespread adoption in clinical
practice [7,8]. Recent studies have found that clinician reliance on laboratory-reported normal thresholds
may lead to false-positive interpretation [9], and physician use of multiple criteria to diagnose PJI was
inferior to the alpha-defensin (AD) test alone [10].

The 2018 ICM scoring system improved on the sensitivity and specificity of the 2011 and 2013 definitions.
However, the scoring system remains dependent on rigid binary diagnostic classification thresholds [11].
Furthermore, Sigmund, et al. reported that 26% of cases were diagnosed as “inconclusive” preoperatively by
the 2018 ICM criteria [12], and previous work using a modified 2018 ICM applied to a large cohort of synovial
fluid (SF) samples reported an inconclusive rate of 7.5% [13]. As the biomarker profile indicative of PJI can
vary from one individual to another, a more robust schema for PJI diagnostic scoring is needed.

Classification machine learning (ML) techniques can be used to develop algorithms to predict diagnostic
categories based on data features [14,15]. Typically, a dataset can be labeled with the diagnosis and then split
into a training set and test set, which is utilized to develop an ML model for diagnosis. For diseases with a
definitive gold standard method, this supervised learning approach can be utilized to match the ML model
results with the gold standard results [16]. However, for complex datasets without definitive classification
categories, supervised training is limited in its effectiveness, as it heavily relies on labeled training data and
predefined output classes, making it challenging to capture nuanced patterns and relationships within
intricate data structures [14]. In such cases, unsupervised learning techniques, such as dimensionality
reduction by principal component analysis (PCA) and clustering (K-means), may prove more suitable for
uncovering hidden structures and extracting meaningful insights from the data [15].

Furthermore, by leveraging combinatorial usage of unsupervised and supervised ML techniques to
synergistically choose the most informative features and subsequently train a classification model, the
overall predictive performance and robustness of the model can be enhanced, enabling a more nuanced
understanding of complex datasets and improving the ability to accurately classify and interpret diverse
patterns within the data [17,18]. Such hybrid and semi-supervised ML approaches have been extensively
studied and proven to be highly effective in medical diagnosis [19]. For example, in a study by Zheng et al.
[20], a hybrid method was applied. K-means clustering was employed to analyze the data patterns
distinguishing between benign and malignant breast cancer tumors. The identified patterns were then used
to train a support vector machine (SVM) classifier, resulting in a breast cancer diagnosis model with an
accuracy exceeding 97% [20].

The purpose of this study was to develop an ML algorithm, based on the results of SF testing, to establish a
PJI probability score. The objective of this model is to establish a straightforward diagnostic approach for PJI,
requiring only a single SF sample annotated with appropriate biomarker results.

Materials And Methods
Study design and ethical approval
The study used prospectively collected deidentified laboratory data from SF specimens obtained to clinically
diagnose PJI, as approved by the Institutional Review Board [WIRB Copernicus Group (WCG IRB)]. The study
was conducted in accordance with the Transparent Reporting of Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD) reporting guideline [21]. ChatGPT versions 3.5 and 4.0 (OpenAI
Global, LLC, San Francisco, CA) were employed solely for copy-editing purposes in the manuscript. The tool
was utilized to refine language and structure, without contributing to the generation of any new content or
concepts. This study was never submitted to or evaluated by any journal other than Cureus.
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Data collection and preparation
All SF specimens were obtained from patients being clinically evaluated for PJI of the hip or knee and
submitted to a central clinical laboratory for comprehensive diagnostic testing (CD Laboratories, Zimmer
Biomet, Towson, MD). Data from laboratory equipment were electronically transmitted to the lab
information system, CGM LabDAQ (CompuGroup Medical, Austin, TX), and powered by Microsoft SQL
Server. This relational database management system (RDBMS) is compliant with and adheres to industry
standards. The training and test sets included laboratory data from January to September 2022. The
validation set comprises data from October to December 2022. There were no disparities in the setting,
eligibility criteria, predictors, and outcomes between the train/test and validation datasets.

The data were restructured from long to wide format by using Microsoft Excel Power Query, imported into a
Python programming language version 3.8 (Python Software Foundation) integrated development
environment (PyCharm, JetBrains, Prague, Czech Republic), and then stored as an Excel file for further
analysis. Age-related data, which had been truncated to ‘>89’ for de-identification, were changed to ‘90’ for
numerical analysis, and filters were applied in Python to remove samples substantially diluted with blood or
with compromised integrity [22] and samples with missing biomarker data (Table 1).

Criteria
Train/test
data

Validation
data

Inclusion
criteria

Patients with a hip or knee arthroplasty, n
19,764 6,453

Comprehensive synovial fluid testing performed for PJI, n

Exclusion
criteria

Specimen substantially diluted with blood (red blood cell concentration >1,000,000/µL) or specimen
integrity compromised (A280 <0.342 or A280 >1.19), n (%)

1,452
(7.3%)

470
(7.3%)

Missing cell count/differential (WBC, %PMN, RBC)*, n (%)
825
(4.2%)

260
(4.0%)

Missing %PMN**, n (%)
312
(1.6%)

122
(1.9%)

Missing neutrophil elastase***, n (%)
10
(0.05%)

N/A

 Total samples utilized for model development and validation, n (%)
17,165
(86.8%)

5,601
(86.8%)

TABLE 1: Inclusion and exclusion criteria
This table demonstrates the number/percentage of samples that were removed from the original set due to each exclusion criterion. A single sample
removed from the train/test set due to extremely high WBC was captured as missing cell count/differential

*Samples missing cell count/differential were due to the following laboratory rejection rules: (1) sample not received in the required lavender top (EDTA)
tube; (2) insufficient sample quantity in EDTA tube, or (3) expired EDTA tube was used. **Samples missing %PMN were due to low WBC (<1000/µL) by
manual counting method, resulting in differential cell counts not being reported. ***Neutrophil elastase was used for unsupervised learning/labeling but not
for the development of the decision tree model

A280: optical density (absorbance) measured at 280 nanometer wavelength; PJI: periprosthetic joint infection; WBC: white blood cell concentration;
%PMN: percentage of neutrophils; RBC: red blood cell concentration; N/A: not applicable; EDTA: ethylenediaminetetraacetic acid

Patient age and SF biomarker test results widely regarded as diagnostic for PJI were used for model
development, including absorbance at 280 nm wavelength (A280) within the range of specimen integrity
[22], AD [23], C-reactive protein (SF-CRP) [24], white blood cell count (WBC) [4], polymorphonuclear cell
percent (%PMN) [4], red blood cell concentration (RBC) ≤1,000,000/µL [22], human neutrophil elastase
(HNE), and microbial antigen test panel (MID Panel) [13]. Feature engineering was performed to combine the
five microbial antigen test results [staphylococcus panel A (SPA), staphylococcus panel B (SPB), candida
panel (CP), enterococcus panel (EF), and C. acnes panel (PAC)] into a single MID Sum feature, which was
included as an input feature to the model together with the individual panel members. No weighting,
ranking, or clinical decision limits were applied to influence model development. SF microbiological culture
(SF-Cx) was not used as an input feature to develop the model as it was used to enable classification by the
2018 ICM PJI definition.

Infection classification
A modified 2018 ICM definition of PJI was used to establish infection classification to evaluate model
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performance (Table 2) [4]. The 2018 ICM definition underwent modification by substituting the serum CRP
with SF-CRP (threshold of 6.6 mg/L). This SF-CRP clinical decision limit has been shown to be equivalent or
superior to serum CRP in the diagnosis of PJI [24,25]. The use of SF-CRP further enables contemporaneous
measurement of the CRP together with the other relevant biomarkers (i.e., A280, AD, WBC, %PMN, RBC,
MID Panel, HNE, and SF-Cx) from a single sample, thereby reducing the variability that can be introduced by
taking multiple measurements at different times from different sample matrices.

Condition Score Total score: infection classification

WBC >3000 cells/µL or alpha-defensin S/CO ≥1.00 3 points ≥6 points: infected

Neutrophils >70% 2 points <3 points: not infected

SF-CRP ≥6.6 2 points
3–5 points: inconclusive

Positive culture result 2 points

TABLE 2: Modified 2018 ICM criteria used to establish infection classification
ICM: International Consensus Meeting; WBC: white blood cell concentration; S/CO: signal to cutoff; SF-CRP: synovial fluid C-reactive protein

Using this methodology, each sample was assessed, and the results were appended as columns to the
dataset: ‘Modified ICM score’ and ‘Infection Classification’. The modified ICM scores and Infection
Classification labels were appended to the dataset to compare the PJI probability predictions to the diagnosis
for model performance evaluation. These features were not used as inputs to the model, nor was the model
trained using the modified ICM Score or the infection classification derived from it as input variables or
labels.

Model development
Data Preprocessing

Using the sklearn toolkit version 1.3.0 (open-source Python package), the input features were preprocessed.
Outlier handling was achieved by applying the Winsorization technique to trim at the upper 95th percentile
for the following features: WBC, SPA, SPB, CP, and EF [26]. To align with the quantitative measurement
range of the assay, SF-CRP values below 0.4 mg/L were trimmed to 0.4 mg/L and SF-CRP values above 60
mg/L were trimmed to 60 mg/L. A single sample with a WBC value of 44,500,000 cells/µL was removed from
the dataset. Next, standard scalar was applied to age, A280, %PMN, and CP, and log transformation was
applied to the remaining input features that displayed a prominent bimodal distribution: AD, SF-CRP, WBC,
RBC, HNE, SPA, SPB, EF, and PAC.

Self-Directed Application of Diagnosis Labels

The Python sklearn toolkit version 1.1.2 was used for self-directed (i.e., unsupervised) learning techniques
to apply diagnosis labels to the data set with the biomarker features. First, dimensionality reduction was
performed by using PCA. Overlaying the infection classification onto the samples represented by the first
two principal components confirmed that unsupervised, self-directed dimensionality reduction was
functioning as intended to facilitate the application of an independent label for training the predictive model
(Figures 1A-1B). The explained variance ratio was used to evaluate the usefulness of the principal
components and to choose how many components to carry forward in the model. Five of the components
with a cumulative variance of 85% were selected to represent all features (Figure 2A). The components were
then clustered using the K-means algorithm, which is a self-directed method for organizing data into groups
based on similarities. The elbow method was used to find the optimal number (n=4, Figure 2B) of clusters.
Each sample in the set was assigned to Clusters 1 to 4, depending on the natural segmentation of data by the
clustering method. Clusters were naturally aggregated from sample data, without any other external
influence. Upon the completion of the cluster assignments, it was observed that Cluster 1 consisted of
samples with results typically considered to be PJI-positive by 2018 ICM criteria whereas Clusters 2-4
comprised samples with results typically considered to be PJI-negative by 2018 ICM criteria (Figure 2C). ICM
"inconclusive" classification was scattered between the clusters. Hence, the self-directed cluster
assignments were used to label samples in Cluster 1 as PJI-positive and samples in Clusters 2-4 as PJI-
negative to train the predictive algorithm. By setting a seed, the dataset was randomized to remove temporal
bias and stratified to ensure an even distribution of samples labeled as positive and negative before being
split in the ratio of 80% training and 20% testing.
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FIGURE 1: Two-dimensional principal component analysis
Panel A: The image shows a two-dimensional scatter plot of the training/test dataset plotted along Component 1
and Component 2 following principal component analysis (PCA); infection classification overlayed with colored
dots demonstrates this unsupervised (i.e., self-directed) approach effectively captures variability associated with
infection classification. Panel B: A histogram displaying the count of samples along Component 1 further
demonstrates the ability of PCA to condense infection-related variability within the dataset

FIGURE 2: Unsupervised assignment of diagnosis labels
Panel A: Unsupervised techniques were used for feature reduction via principal component analysis (PCA),
followed by K-means clustering. The cumulative explained variance shows the accumulation of variance for each
principal component number. Panel B: The elbow plot shows the optimum number of clusters for the entire data
set after PCA transformation. Panel C: The histogram shows the number of samples classified as "infected", "not
infected", and "inconclusive" clustered through the K-means algorithm

WCSS: within-cluster sum of squares

Supervised Approach to Predict PJI Probability

The decision tree algorithm was chosen because it offers greater interpretability for humans compared to
other ML models. Additionally, it provides a probability score instead of a binary classification, enhancing
its transparency and explanatory power. Our model was built with Python programming language version 3.8
(Python Software Foundation). Model training occurred in an Azure cloud-based Data Science Virtual
Machine (Microsoft), which is a general-purpose standard D3_v2 machine equipped with a quad-core central
processing unit, 14 GB of random-access memory, and 200 GB of storage. The decision tree was built using
default parameters, which originally led to overfitting. To prevent this overfitting, post-pruning was applied
after using cost complexity pruning. This pruning technique is parameterized by cost complexity parameter-
alpha (ccp_alpha). The greater the value of ccp_alpha, the greater the number of nodes that are pruned.
Minimal cost complexity pruning recursively finds the “weakest link” to be pruned. Five-fold cross-
validation was performed during the selection of the optimal ccp_alpha value on the training set, which was
established to be 0.0005.

Performance evaluation
The performance of the model created with unsupervised techniques was evaluated versus the modified 2018
ICM criteria for PJI. A receiver operating characteristic (ROC) curve was generated from the training set to
identify the optimal PJI probability score that best discriminates between "infected" and "not infected"
classifications. The area under the curve (AUC) was also calculated. It has been demonstrated that medical
decision-making can be explained by the threshold model, whereby physicians should treat if the probability
of disease exceeds a specified threshold and withhold treatment otherwise [27]. Therefore, a probability
score closer to the boundary limits is advantageous for increasing diagnostic certainty. To facilitate this, the
ROC data were further evaluated to identify thresholds closer to the boundaries of <1% probability and >99%
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probability that could be feasibly established without substantially altering the diagnostic accuracy profile.
These thresholds were established as the PJI-negative decision limit and the PJI-positive decision limit to
evaluate model performance.

For the evaluation of the model performance in the test and validation sets, the sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV) were calculated. Samples with a PJI
probability of greater than the PJI-positive decision limit or less than the PJI-negative decision limit
were classified as positive or negative by the model, respectively. The samples between these two limits were
interpreted as inconclusive by the model. To compute sensitivity and specificity, the subgroups are
delineated as follows: True positive corresponds to samples classified as "infected" and predicted as PJI-
positive by the model. True negative refers to samples classified as "not infected" and predicted as PJI-
negative by the model. False negative designates samples classified as "infected" but predicted to be below
the PJI-positive decision limit by the model. False positive pertains to samples classified as "not infected" but
predicted to be above the PJI-negative decision limit by the model. Samples that had an infection
classification as "inconclusive" were excluded from these analyses.

Model interpretability and discordant analysis
SHAP (Shapley Additive exPlanations) version 0.39.0 was used to explore model interpretability. SHAP is a
model-agnostic method based on cooperative game theory and is used to increase the transparency and
interpretability of ML models [28]. SHAP values allow local interpretability comparison by showing the
feature contributions for each prediction. Waterfall plots for each prediction show how the features
contribute to the predicted probability f(x) in comparison to the mean predicted probability of the model
E[f(x)]. The sum of all SHAP values of the features will be equal to E[f(x)] - f(x). For this study, the absolute
SHAP values show how much a single feature affects the prediction of the PJI diagnosis and which
biomarkers are driving a specific instance. The SHAP values also enable global interpretability by calculating
the overall feature importance across the entire dataset. The values can also be useful for understanding
discrepancies between the model prediction and the infection classification, and hence it was employed for
discordant analysis and to evaluate the prediction of "inconclusive" samples by the model as PJI-positive or
PJI-negative.

Statistical analysis
Descriptive statistics were generated for the training/test and validation sets using scipy.stats, a sub-
package of the Python package SciPy (version 1.10.1). Continuous variables were represented as median
with interquartile range (IQR). Categorical variables were represented as percentages of samples in each
category. Statistical comparisons were performed to evaluate for differences between the training/test and
validation datasets. The t-test was used for continuous variables and the Chi-square test was used for
categorical variables. GraphPad Prism 9.4.1 was used to generate a ROC curve, AUC with a 95% confidence
interval (CI), and sensitivity/specificity pairs with associated Clopper-Pearson 95% CIs from the training
dataset. The Youden Index was used to estimate a range of PJI probability scores associated with optimal
discrimination between "infected" and "not infected" classifications. Minitab 18 was used to calculate
sensitivity, specificity, PPV, and NPV using a one-sample proportion with the Exact method for 95% CI.
Minitab 18 test for two proportions was used to compare the proportion of "inconclusive" results between
the PJI probability score and the modified 2018 ICM Score, with the p-value calculated using the normal
approximation method.

Results
Data collection and preparation
For the training and test dataset, 19,764 hip and knee SF samples submitted to the laboratory for PJI testing
from January to September 2022 were analyzed. Samples that did not meet specimen integrity requirements
(RBC ≤1,000,000/µL and A280 <0.342 or A280 >1.19) were excluded (n=1,452, 7.3%). Samples without a full
set of biomarker values needed for model development, and one sample with an outlier WBC result, were
removed from the final train/test dataset (n=17,165, 86.8%) (Table 1). For the validation set, a total of 6,453
samples were acquired from October to December 2022. Samples that did not meet specimen integrity
requirements were excluded (n=470, 7.3%). All samples with a full set of input biomarker values were
retained in the dataset for validation (n=5,601, 86.8%) (Table 1).

Baseline characteristics were similar between the two datasets (Table 3). Statistically significant differences
in baseline characteristics between the training/test and validation datasets were further scrutinized,
revealing no clinically meaningful distinctions.

Variables Training and test combined (n=17,165) Validation (n=5,601) P-value

Demographics

Age, years, median (IQR) 67 (60-73) 67 (60-73) 0.790
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Gender, %

<0.001*
Male 51.4% 52.0%

Female 48.6% 47.7%

Unknown 0.00% 0.3%

Index joint, %

<0.001*

Right knee 48.3% 47.2%

Left knee 43.9% 44.7%

Right hip 4.2% 4.1%

Left hip 3.6% 4.0%

Biomarkers, median (IQR)  

A280 0.6 (0.5-0.8) 0.6 (0.5-0.8) 0.078

RBC, cells/µL 16,000 (6,000-50,000) 16,000 (6,000-49,000) 0.577

SF-CRP, mg/L 1.4 (0.5-4.9) 1.4 (0.5-4.7) 0.475

AD 0.1 (0.1-0.4) 0.1 (0.1-0.3) 0.024*

TNCC 691 (314-2,330) 656 (299-2,182) 0.956

%PMN 40 (26.3-66.7) 39.8 (25.9-65.1) 0.239

SF-Cx, %

<0.001*
Positive 12.8% 12.8%

Negative 85.3% 85.2%

Not performed 1.9% 1.9%

Microbial antigen test panels, median (IQR)

SPA 0.6 (0.5-0.8) 0.6 (0.5-0.9) 0.029*

SPB 0.6 (0.5-0.9) 0.6 (0.5-0.9) 0.0705

CP 0.5 (0.4-0.7) 0.5 (0.4-0.7) <0.001*

EF 0.5 (0.5-0.6) 0.5 (0.5-0.6) 0.2502

PAC 0.1 (0.1-0.1) 0.1 (0.1-0.1) 0.312

MID Sum 2.3 (2.0-3.2) 2.3 (2.0-3.3) 0.100

Infection classification based on modified 2018 ICM, %

PJI-positive 17.1% 16.8%

<0.001*PJI-negative 75.1% 75.8%

Inconclusive 7.8% 7.4%

TABLE 3: Baseline characteristics
*Statistically significant (p<0.05)

IQR: interquartile range; A280: optical density (absorbance) measured at 280 nanometer wavelength; RBC: red blood cell concentration; SF-CRP:
synovial fluid C-reactive protein; AD: alpha-defensin (signal:cutoff); %PMN: percentage of polymorphonuclear cells (i.e., % neutrophils); SPA: microbial
antigen test Staphylococcus species panel A (signal/noise:cutoff); SPB: microbial antigen test Staphylococcus species panel B (signal/noise:cutoff); CP:
microbial antigen test Candida species panel (signal/noise:cutoff); EF: microbial antigen test Enterococcus species panel (signal/noise:cutoff); PAC:
microbial antigen test Cutibacterium acnes panel (signal/noise:cutoff); MID Sum: sum of microbial antigen test panel results; ICM: International Consensus
Meeting

Infection classification with the modified 2018 ICM definition
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Per the infection classification based on modified 2018 ICM Criteria, when the entire dataset was analyzed
collectively, a total of 3,873 samples (17.0%) were classified as "infected", 17,143 samples (75.3%) were
classified as "not infected", and 1,750 samples (7.7%) were classified as "inconclusive".

Development and performance evaluation of the predictive model
The decision tree model features five layers, each comprising two nodes (Figure 3). These nodes divided the
probability of PJI into two categories: PJI-positive and PJI-negative, determined by the prevailing class
among the samples that fall into each respective node. ROC analysis of the training set rendered an AUC of
0.993 (95% CI: 0.991-0.995) and an optimal PJI probability score of 50% (Table 4). Further examination
revealed that PJI-negative and PJI-positive decision limits could be established at 20% and 80% while
maintaining the diagnostic accuracy profile (Table 4, Figure 4).

FIGURE 3: Decision tree model for classifying PJI
The decision tree model establishes optimal decision thresholds for the biomarkers at each decision node, and as
a result of, this some biomarkers are represented at multiple decision thresholds. Each biomarker is color-coded,
with a lighter color corresponding to a lower decision threshold and a darker color corresponding to a higher
decision threshold for each biomarker

PJI: periprosthetic joint infection; AD: alpha-defensin; MID Sum: sum of microbial antigen test panel results; SF-
CRP: synovial fluid C-reactive protein; %PMN: percentage of neutrophils; WBC: white blood cell concentration;
SPB: microbial antigen test staphylococcus panel B
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Probability score Sensitivity 95% CI Specificity 95% CI J-stat

>2.3% 99% 0.99 to 1.0 95% 0.95 to 0.96 0.948

>4.5% 99% 0.99 to 1.0 95% 0.95 to 0.96 0.949

>5.2% 99% 0.99 to 1.0 97% 0.97 to 0.97 0.964

>20% 99% 0.99 to 1.0 98% 0.97 to 0.98 0.968

>29% 99% 0.99 to 0.99 98% 0.98 to 0.98 0.974

>40% 99% 0.99 to 0.99 98% 0.98 to 0.99 0.976

>50% 99% 0.99 to 0.99 98% 0.98 to 0.99 0.976

>60% 99% 0.99 to 0.99 98% 0.98 to 0.99 0.976

>74% 99% 0.99 to 0.99 98% 0.98 to 0.99 0.975

>80% 99% 0.99 to 0.99 98% 0.98 to 0.99 0.975

>84% 97% 0.96 to 0.98 99% 0.98 to 0.99 0.958

>91% 95% 0.94 to 0.96 99% 0.99 to 0.99 0.943

>97% 93% 0.92 to 0.94 99% 0.99 to 0.99 0.926

TABLE 4: Decision limits based on receiver operating characteristic curve
Receiver operating characteristic (ROC) curve sensitivity and specificity at different probability thresholds revealed that the estimated sensitivity of 99%
and estimated specificity of 98% could be achieved by setting the PJI-negative decision limit to 20% and the PJI-positive decision limit to 80%. The
training dataset was used for this analysis

CI: confidence interval; J-stat: J-statistic associated with Youden Index

FIGURE 4: PJI probability score dot plot
Receiver operating characteristic (ROC) curve sensitivity and specificity at different probability thresholds
revealed that the estimated sensitivity of 99% and estimated specificity of 98% could be achieved by setting the
PJI-negative decision limit to 20% and the PJI-positive decision limit to 80%. The training dataset was used for
this analysis

PJI: periprosthetic joint infection

When comparing to infection classification based on modified 2018 ICM criteria, sensitivities of 98.8% (95%
CI: 97.6%-99.5%) and 99.1% (95% CI: 98.3%-99.6%), and specificities of 97.3% (95% CI: 96.7%-97.9%) and
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97.1% (95% CI: 96.6%-97.6%) were achieved on the test and validation sets, respectively (Table 5). Positive
and negative predictive values were 92.9% (95% CI: 90.6%-94.8%) and 99.8% (95% CI: 99.5%-99.9%) for the
test set and 91.9% (95% CI: 90.1%-93.5%) and 99.9% (95% CI: 99.7%-99.9%) for the validation set (Table 5).
Overall, the model predicted 1.3% of samples in the validation set as "inconclusive" (i.e., falling between
20%-80% probability score) as compared to a rate of 7.4% by ICM (p<0.001) (Figure 5), effectively reducing
the Inconclusive result rate by 82.4% or more than 5X.

 Performance characteristic Value 95% CI

Test set (n=3,433)

Sensitivity 98.8% 97.6%-99.5%

Specificity 97.3% 96.7%-97.9%

PPV 92.9% 90.6%-94.8%

NPV 99.8% 99.5%-99.9%

Validation set (n=5,601)

Sensitivity 99.1% 98.3%-99.6%

Specificity 97.1% 96.6%-97.6%

PPV 91.9% 90.1%-93.5%

NPV 99.9% 99.7%-99.9%

TABLE 5: Model performance for the test and validation sets compared to infection classification
by modified 2018 ICM
ICM: International Consensus Meeting; CI: confidence interval; PPV: positive predictive value; NPV: negative predictive value

FIGURE 5: PJI probability distribution
Sample distribution of predicted PJI probability score, with colors representing "not infected" (blue), "inconclusive"
(gray), and "infected" (orange) classification based on modified 2018 ICM

PJI: periprosthetic joint infection; ICM: International Consensus Meeting

Model interpretability and discordant analysis
Feature Importance

In both the train/test and validation datasets, the top five features illustrated by beeswarm plots were AD,
MID Sum, %PMN, WBC, and SF-CRP, and the least important features were age and the specimen integrity
biomarkers (A280, RBC) (Figure 6A: train/test and Figure 6B: validation, Figure 7). In addition to being
identified by SHAP as the feature with the largest effect, AD was also observed as the primary node and at
several decision nodes within the decision tree (Figure 3). In the train/test set, the leading predictor of the PJI
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probability score was the AD result. Among samples above the 80% PJI probability threshold, a high AD
result was the dominant factor that drove a positive prediction in 96% of cases, followed by MID Sum (3%),
and %PMN (1%). Conversely, a low AD result was the most influential factor for 99% of samples predicted as
PJI-negative (PJI probability <20%), followed by MID Sum (0.9%), and SF-CRP (0.1%).

FIGURE 6: Beeswarm plot for (A) combined train/test set and (B)
validation set
Each variable name is shown on the left-hand side with the variable with the greatest contribution listed at the top.
To the right of the variables, there are colored lines, which are individual points that correspond to the observations
in the population. A higher value for the variable is represented in red, while a lower value for the variable is
shown in blue. The X-axis displays the contribution of the variable to the model predictions of PJI probability for
each sample, represented by dots. Hence, a value to the far right (i.e., a higher SHAP value) indicates that the
variable is contributing highly to a PJI-positive prediction. As the name implies, the SHAP values are additive (or
subtractive) to explain the contribution of each feature to the overall prediction

SHAP: SHapley Additive exPlanations; AD: alpha-defensin; MID Sum: sum of microbial antigen test panel results;
%PMN: percentage of neutrophils; WBC: white blood cell concentration; SF-CRP: synovial fluid C-reactive
protein; SPB: microbial antigen test Staphylococcus species panel B; SPA: microbial antigen test Staphylococcus
species panel A; PAC: microbial antigen test Cutibacterium acnes panel; EF: microbial antigen test Enterococcus
species panel; CP: microbial antigen test Candida species panel; A280: optical density (i.e., absorbance) at 280
nanometers wavelength; RBC: red blood cell concentration
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FIGURE 7: Heatmap of validation set
Heatmap of all samples (i.e., instances) in the validation dataset showing SHAP values at each instance arranged
in order from least to highest log odds (i.e., probability) of the sample being predicted as PJI-positive. The color
scale of the heatmap is standardized to show SHAP values for the set of samples in the heatmap. The sum of
individual feature SHAP values added to the mean probability of the sample set equals the PJI probability for the
instance in question. Instances less than and including 4,233 have probability scores of <20% whereas instances
including and greater than 4,307 have probability scores of >80%

SHAP: SHapley Additive exPlanations; AD: alpha-defensin; MID Sum: sum of microbial antigen test panel results;
%PMN: percentage of neutrophils; WBC: white blood cell concentration; SF-CRP: synovial fluid C-reactive
protein; SPB: microbial antigen test Staphylococcus species panel B; RBC: red blood cell concentration; A280:
optical density (i.e., absorbance) at 280 nanometer wavelength

Discordant Analysis

The model prediction was 90.8% concordant with the infection classification for the validation dataset. The
proportion of samples classified as "not infected" and predicted as PJI-positive was 1.5%. The proportion of
samples classified as "infected" and predicted as PJI-negative was 0.1% (Figure 5). Evaluation in the larger
train/test set revealed that AD was the most prominent contributor in approximately 75% of each of these
cohorts (Figures 8, 9).
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FIGURE 8: Heatmap of samples classified as "infected" and predicted
as PJI-negative
Discordant analysis of samples classified as "infected" and predicted as PJI-negative (maximum probability was
5.7%) by the model (n=22). The individual SHAP values in this analysis range from -0.4126 represented by dark
blue to +0.4126 represented by dark red, with the color distribution centered at 0, represented by white.

PJI: periprosthetic joint infection; SHAP: SHapley Additive exPlanations; AD: alpha-defensin; MID Sum: sum of
microbial antigen test panel results; SF-CRP: synovial fluid C-reactive protein; WBC: white blood cell
concentration; %PMN: percentage of neutrophils; SPB: microbial antigen test Staphylococcus species panel B;
RBC: red blood cell concentration; A280: optical density (i.e., absorbance) at 280 nanometers wavelength

FIGURE 9: Heatmap of samples classified as "not infected" and
predicted as PJI-positive
Discordant analysis of samples classified as "not infected" and predicted as PJI-positive (lowest probability was
83%) by the model. The individual SHAP values in this analysis range from -0.717 represented by dark blue to
+0.717 represented by dark red, with the color distribution centered at 0, represented by white

PJI: periprosthetic joint infection; SHAP: SHapley Additive exPlanations; AD: alpha-defensin; MID Sum: sum of
microbial antigen test panel results; SF-CRP: synovial fluid C-reactive protein; WBC: white blood cell
concentration; %PMN: percentage of neutrophils; SPB: microbial antigen test Staphylococcus species panel B;
RBC: red blood cell concentration; A280: optical density (i.e., absorbance) at 280 nanometers wavelength

Evaluation of Inconclusive Sample Predictions by the Model
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Within the cohort (n=414) classified as "inconclusive" by modified 2018 ICM, the model predicted 24.9%
(n=103) of these as PJI-negative (PJI probability <20%), 67.6% (n=280) as PJI-positive (PJI probability >80%),
and 7.5% (n=31) as "inconclusive" (PJI probability between 20%-80%) (Figure 5).

Samples classified as "inconclusive" by modified 2018 ICM were distributed across 14 distinct biomarker
positivity categories using the modified 2018 ICM thresholds (Table 2). The largest category consisted of a
cohort exhibiting solely a positive WBC biomarker, with a modified 2018 ICM score of 3 points. Among these
90 samples, the model predicted 38% as PJI-positive. The second largest category comprised a cohort with
positive results for AD, WBC, and %PMN, possessing a modified 2018 ICM score of 5 points. Out of these 89
samples, the model predicted 98% as PJI-positive. Additionally, the model predicted positive outcomes for
over 98% of samples with three positive biomarkers (Figure 10). It was also observed that microbiological
culture (Cx) was positive in only 3.1% (13 of 414) of this cohort. The model predicted 69% (9 of 13) of these
as PJI-positive. Notably, all Cx-positive samples that the model did not predict as positive belonged to the
same biomarker positivity category (SF-CRP and Cx).

FIGURE 10: Biomarker positivity distribution for samples with
"inconclusive" classification based on modified 2018 ICM
This figure illustrates that samples with more positive biomarkers and samples with AD-positive are more
frequently predicted as PJI-positive by the model

ICM: International Consensus Meeting; PJI: periprosthetic joint infection; AD: alpha-defensin; WBC: white blood
cell concentration; SF-CRP: synovial fluid C-reactive protein; Cx: microbiological culture; %PMN: percentage of
neutrophils

Feature importance pertaining to model prediction of the samples classified as "inconclusive" by modified
2018 ICM was explored (Figure 11). The heatmap shows that AD was the most important feature for 87% of
these samples. AD was driving both low-negative and high-positive predictions.
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FIGURE 11: Model prediction of samples with "inconclusive"
classification based on modified 2018 ICM
The heatmap shows SHAP values at each instance, arranged in order from least to highest probability of samples
being predicted as PJI-positive. The color scale is standardized to show SHAP values for the set of samples in
the heatmap. The sum of individual feature SHAP values added to the mean probability of the sample set equals
the PJI probability for the instance in question. The individual SHAP values in this analysis range from -0.639
represented by dark blue to +0.639 represented by dark red, with the color distribution centered at 0, represented
by white

ICM: International Consensus Meeting; PJI: periprosthetic joint infection; SHAP: SHapley Additive exPlanations;
AD: alpha-defensin; MID Sum: sum of microbial antigen test panel results; SF-CRP: synovial fluid C-reactive
protein; %PMN: percentage of neutrophils; WBC: white blood cell concentration; SPB: microbial antigen test
Staphylococcus species panel B; RBC: red blood cell concentration; A280: optical density (i.e., absorbance) at
280 nanometer wavelength

Discussion
This study leverages an extensive SF dataset to develop an ML model for aiding the diagnosis of PJI. Central
to this research is the unsupervised clustering of samples into distinct, naturally occurring categories. These
clusters, which emerged organically within the dataset, form the foundation for subsequent analyses. A
decision tree model was then developed, utilizing these clusters as labels for training new sample
classifications, distinct from the original clustering. The model was initially trained on a designated training
set and further evaluated against a test set derived from the same initial population. To validate the model, a
separate validation cohort was employed, enabling a critical assessment of its performance against the
modified 2018 ICM definition of PJI, where it demonstrated notable diagnostic accuracy. Additionally, the
application of the SHAP method underscored the importance of key biomarkers, such as AD, MID Sum,
%PMN, and SF-CRP, in the model’s decision-making. This model, by processing and integrating diverse
diagnostic data, offers a potentially more efficient and accurate alternative to the manual compilation,
interpretation, and scoring of multiple tests which is currently performed by individual clinicians. We
propose that the integration of such a model into the laboratory reporting of PJI testing would reduce
human error in diagnosing infection, translating into a higher rate of appropriate patient treatment plans
and improved patient outcomes.

The unsupervised clustering of SF samples into naturally occurring categories is a pivotal aspect of this
study. This approach, devoid of preconceptions about PJI, analyzes the inherent structures within the
dataset to categorize samples based on feature set similarities. The dataset, encompassing 17,165 samples
with over 12 potential feature inputs, presented a significant challenge in developing an accurate predictive
model due to its high-dimensionality metadata [17]. To address this, we utilized principal component
analysis and unsupervised K-means clustering to autonomously organize data and reduce redundancy in
features. While unsupervised ML has previously been used to stratify patients based on PJI risk [29], this
study represents a novel application of these methods to a large SF dataset, creating clinically meaningful
diagnostic subgroups. We identified four distinct clusters in our dataset. Assessing these clusters against the
2018 ICM scoring revealed three clusters containing ICM-negative samples and one cluster with ICM-
positive samples. Notably, samples classified as "inconclusive" by the modified 2018 ICM definition were
distributed across several clusters.

Building on these unsupervised clusters, an ML algorithm was developed to classify samples. A decision tree
model, selected for its clarity and interpretability, was trained to align with the unsupervised clustering. The
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diagnostic model's evaluation against a modified 2018 ICM definition of PJI yielded an AUC of 0.993, with a
sensitivity of 99.1% and a specificity of 97.1% in the unlabeled, independent validation dataset. The
alignment between the ML classification and the modified 2018 ICM definition underscores the clinical
relevance of the unsupervised clustering outcomes. Interestingly, while the modified 2018 ICM definition
applied to this study's validation samples resulted in a rate of "inconclusive" diagnoses of 7.4%, the ML
algorithm reduced this rate to 1.3%.

The final ML decision tree was analyzed using the SHAP method. This approach ensured an unbiased
evaluation process, free from any preferential treatment of specific biomarkers. The analysis revealed that
the AD test result emerged as the most dominant feature, aiding in the decision-making process for over 95%
of samples. This finding aligns with existing literature including a meta-analysis, where AD has been
recognized as one of the most accurate biomarkers for PJI [30]. Equally noteworthy was the identification of
the MID Sum panel as the second most influential feature in the model. This observation suggests that the
combination of a key inflammatory marker with a dominant organism detection feature was instrumental in
sample stratification. The MID panel, encompassing various antigen tests for common PJI pathogens, has
been previously noted for its high positive and negative predictive value in PJI diagnosis [13]. Also, the
neutrophil percentage, white blood cell concentration, and SF-CRP results were in the top five dominant
biomarkers, all known to be important determinants of the diagnosis of PJI.

In the evolving landscape of PJI diagnostics, the integration of ML models presents an opportunity to
enhance the accuracy and efficiency of clinical decision-making. The complexity inherent in the current
standard of care, particularly with the 2018 ICM definition, necessitates meticulous attention to detail in
test ordering, data conversion, and score computation. This process is susceptible to human error [9,10] and
the misapplication of scoring thresholds [12], potentially affecting diagnostic accuracy. Even researchers
with subject matter expertise have misapplied the scoring thresholds, leading to inaccuracies in categorizing
infections. In contrast, the proposed ML model automates these steps, effectively reducing the likelihood of
error. Decreasing errors in the diagnosis of PJI could have a substantial impact on patient care. Given the
severity of PJI, its diagnosis triggers a completely different treatment plan for the patient. When the
diagnosis is negative, a simple revision or observation of the patient frequently suffices as the preferred
treatment plan. On the other hand, a positive diagnosis of PJI generally requires urgent surgery, which often
includes multiple stages, requires high-dose intravenous antibiotics, and has inferior results even when
eradicating infection [31]. The diagnosis of PJI is therefore critical for both the treatment plan chosen by the
clinician and the outcome experienced by the patient. Furthermore, given the high cost of revision joint
surgery for PJI, even small to moderate reductions in human error would be expected to result in cost
savings [32].

Another critical aspect where the ML model holds an advantage is in reducing diagnostic ambiguity. One of
the challenges with the current standard of care is the relatively high rate of physician uncertainty and
inconclusive diagnoses, which can lead to clinical delays in providing appropriate treatment. The ML model
addresses this issue by significantly lowering the rate of inconclusive results, thus providing clearer and
more decisive diagnostic outcomes. This reduction in ambiguity is pivotal in clinical settings, where timely
and confident decision-making is essential. The existing literature suggests that delays in the care of PJI may
lead to poor patient outcomes, even when the correct treatment is eventually rendered [33]. Therefore, an
ML model increasing diagnostic certainty and streamlining the diagnostic process would be expected to lead
to faster physician decision-making and hence an improvement in patient outcomes.

Finally, the dynamic nature of medical guidelines, especially in the context of PJI, presents a significant
challenge in clinical practice. New definitions and guidelines are frequently introduced, but their adoption
into clinical practice often encounters a lag, primarily due to the time it takes for physicians to familiarize
themselves with these changes [34]. The ML model tackles this challenge by facilitating real-time updates of
newly validated enhancements and data, emphasizing a dynamic approach to address evolving needs. This
capability significantly shortens the adoption curve, ensuring that physicians are always working with the
most current standards without the need for extensive retraining or knowledge updates. Such a feature is
particularly advantageous in the rapidly evolving field of medical diagnostics, where staying abreast of the
latest developments is crucial for optimal patient care [35].

Limitations
The study has a few limitations that warrant discussion. First, it entails a report of model performance in a
base case example. Samples with missing data for any of the biomarkers used as features in the model
development were removed. Similarly, samples failing to meet specimen integrity requirements of the
laboratory were omitted, and only samples from hip or knee arthroplasty were included in order to align with
the applicability of the 2018 ICM definition. Consequently, the model performance for samples with a
missing feature, poor integrity, or alternative joint location (e.g., shoulder, wrist) is unknown. This limitation
is not unique to this model and does not undermine the performance results, particularly since these
omissions accounted for less than 15% of the specimens tested at the laboratory. Certainly, attempting to
make a diagnosis with missing information or interpreting potentially compromised results from in vitro
diagnostic testing performed with a poor-quality sample are circumstances that should be avoided;
nonetheless, these events do arise in the real-world application of medicine. Future work should evaluate
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these edge cases to further our understanding of how model performance may be impacted by missing
inputs, specimen dilution or contamination, and anatomical location.

Secondly, the model has not been evaluated on data from samples tested by another laboratory; hence,
further validation work would be necessary to put this model into use elsewhere. Third, the results of a
decision-tree algorithm, even though easy to understand and interpret, may be prone to overfitting and
instability and may show differences in performance in case of a data drift [36]. Notably, there are risk and
benefit factors that support model selection, as all models have strengths and weaknesses. In this case, the
limitations associated with a decision-tree algorithm are mitigated by access to a large amount of very recent
data [37]. Finally, only preoperative SF biomarker data was available to classify samples using the 2018 ICM
criteria. While the authors of the 2018 ICM criteria [4] indicated that “not all tests are needed to use this
proposed definition, and a preoperative diagnosis can be made without the need for intraoperative findings,”
the use of preoperative SF data for diagnosis could be viewed as both a limitation and a strength of this
study. The focus on the preoperative assessment in this study highlights the potential for this PJI probability
score to enhance preoperative diagnosis of infection, which is crucial when surgeons need to make definitive
treatment decisions.

Conclusions
Although defined methods and tools for the diagnosis of PJI using multiple biomarker criteria are currently
available, they are not consistently applied or broadly adopted. There is a need for algorithmic interpretation
of these biomarkers to enable consistent application of the results to drive treatment decisions. The new
model developed to apply to clinical parameters measured from a patient’s SF sample to render a
preoperative probability score for PJI has shown high accuracy. Taken together with other clinical signs, this
model has the potential to improve the diagnostic process by reducing the rate of Inconclusive classification,
thereby enabling more appropriate and expedited downstream treatment decisions.
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