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Abstract
Background

Titanium dental implants (e.g., Nobel Biocare, Switzerland) are routinely used as support for dental
restoration. Titanium has been the material of choice due to its corrosion resistance and ability to integrate
with bone. Nevertheless, corrosion and titanium dissolution do occur. Compared to control, peri-implantitis
tissue biopsies have been shown to contain high concentrations of dissolved titanium as well as metal
particles. Dissolved titanium species have been found to be associated with the structure/diversity of the
subgingival plaque microbiome and the extent of global methylation. Of note, peri-implantitis and peri-
implant mucositis are common biological complications of implant therapy. Microorganisms and local
inflammation together with a gradient of oxygen have been proven to form an electrochemical fuel cell,
which generates the current that flows through the body of the titanium implant. Effectively, the fuel cell
reduces oxygen and oxidizes titanium that turns into a soluble form. We are proposing a new zirconia-
titanium composite implant design whereby the electrical current is disrupted while other properties are still
conducive to osseointegration.

Methodology

Biocompatible zirconia bolts were treated with hydrofluoric acid (HF) and coated with titanium in a vacuum
evaporator. The coating was masked with nail polish, and unmasked areas were etched with HF followed by
mask removal with a solvent. Microbial challenges were conducted with a volunteer’s plaque. Regular
implant (control) and the prototype were inserted into simulated peri-implant environments implemented
as a fiberglass sleeve immersed into a growth medium. After a five-day growth, samples were taken and
HNOj5 digested. Dissolved titanium was evaluated by inductively coupled plasma mass spectrometry.

Results

Proof-of-concept implant prototypes were successfully created. Vacuum deposition results in reproducible
stable titanium coating. The thickness of the titanium coating was estimated using atomic force
microscopy. A microbial challenge revealed that compared to the commercial titanium implant, the new
implant prototype showed decreased amounts of corrosion-leached titanium.

Conclusions

We demonstrate a path forward toward a new design of a dental implant, whereby corrosion-induced
electrical currents are interrupted resulting in a decreased amount of dissolved titanium.

Categories: Dentistry
Keywords: atomic force microscopy, peri-implantitis, microbial fuel cell, corrosion, titanium, dental implant,
osseointegration

Introduction

Titanium dental implants (e.g., Nobel Biocare, Switzerland) have been successfully used as support for
dental restoration since the end of the 1970s. Although earlier versions of implants (made of steel) existed,
compared to titanium, they lacked integration with the bone (osseointegration). Hence, titanium has been
the material of choice ever since due to its ability to integrate with bone and corrosion resistance [1].
Nevertheless, corrosion of the titanium dental implants does occur. The corrosion processes include
disruption of the protective oxide layer leading to titanium dissolution [2]. Corrosion-inducing factors
include (i) local acidification due to inflammation of peri-implant tissues [3], and (ii) generation of an acidic
environment by bacteria, e.g., the release of lactic acid by Streptococcus mutans [4]. In addition, chemical
agents, such as acidic fluoride solutions, have been associated with corrosion [5]. The electrical conductivity
of the implant itself has been implicated in the process of corrosion [6]. Specifically, in the presence of
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bacteria, a closed circuit is formed between partially oxygenated (anode) and anoxic zones (cathode).

The associations between the detected corrosion products and implant health have been recently
investigated. Compared with healthy implants, increased quantities of dissolved titanium were detected in
submucosal plaque around implants affected with peri-implantitis [7]. A recent study showed that peri-
implantitis tissue biopsies contain high concentrations of titanium compared to controls from periodontitis
tissue. Moreover, titanium metal fragments were identified in the peri-implantitis tissue [8]. An association
between the dissolved titanium species and the structure/diversity of the subgingival plaque microbiome
was established [9].

Another interesting finding was that dissolved titanium concentration was associated with the extent of
global methylation independent of the peri-implantitis status. Peri-implantitis and peri-implant mucositis
are common biological complications of implant therapy [10]. A recent systematic review revealed that the
prevalence of peri-implant mucositis and peri-implantitis ranges from 19% to 65% [11]. This has been
confirmed by one of the largest studies performed in Sweden [12].

One way to minimize peri-implantitis and combat corrosion is by ensuring that corrosion-generated
electrical currents are blocked. Here, we propose a new dental implant design that combines
osseointegration properties of titanium and at the same time offers very high impedance to the corrosion
electrical current. The body of the implant is made of a non-conductive material, e.g., zirconia or porcelain
ceramic coated with electrically isolated titanium rings. We report preliminary results of a microbiological
challenge of the new design with volunteer-derived microbiota in vitro.

Materials And Methods

Biocompatible zirconia bolts (Ceramco Inc., Z10320HEX1.250, 10-32 x 1-1/4" Zirconia Hex Head Bolt) were
treated with 15% hydrofluoric acid (HF) for several minutes, followed by a rinse with deionized water, and
heating up to 300°C for more than two hours followed by cooling down. Titanium coating was performed in a
vacuum evaporator (JEOL Inc.) with a 0.5 mm titanium wire 110.8 mg (99.99% purity) wound around a 0.75
mm tungsten wire (99.95% purity). Stripes were created by masking titanium zones with nail polish,
followed by 15% HF etching for approximately 20 seconds, and nail polish removal with methyl ethyl ketone
for two hours.

The media for microbial challenges was prepared as follows: trypticase Soy Broth (30 g/L), yeast extract (5
g/L), pH adjusted to 7.2, and autoclaved. Upon cooling down, the media base was supplemented with vitamin
K3 stock (0.2 mL/L) and hemin stock (filter-sterilized) (10 mL/L). The hemin stock was prepared by
dissolving 50 mg of hemin (Sigma-Aldrich) in 1 mL of 1 M NaOH followed by diluting with 99 mL of
deionized water water. Vitamin K3 stock was prepared by dissolving 250 mg of vitamin K3 in 50 mL of 95%
ethanol.

Oral microorganisms were obtained as subgingival/interdental plaque samples derived from the authors who
voluntarily agreed to provide samples. Specifically, a pipette tip was used by the volunteers to collect their
plaque from around the lower first molar and second pre-molar. The plaque was suspended in the growth
medium. Using a syringe, 3 mL of bacterial suspension was added between the fiberglass sleeves and the
screws (details of the fiberglass/implant setup are presented in the Results). Subsequently, fresh sterile
media was poured into the beaker (between the beaker and the sleeves). Microbial growth was conducted for
five to seven days at 37°C in a covered water bath allowing gas exchange and presumably ~100%

humidity. Upon completion of the microbial challenge, 1 mL of the medium was harvested near the outside
of the fiberglass sleeve.

Similar to our earlier research [6], titanium measurements were conducted by inductively coupled mass
spectrometry (ICP-MS) using the Agilent 7500CE mass spectrometer. The organics were digested in a
solution containing 50:50 (V/V) concentrated HNOs:deionized water, which were Fisher trace-metal grade

and Barnstead Nanopure >18 MOhm/cm, respectively. The digestion solution also contained trace amounts
of HF and 10 ppm Tb as a recovery standard (BDH reagents). Each sample was brought to 5 mL with the
digestion solution, followed by open-vessel microwave digestion at the following settings: power 800 W,
100%, ramp 15 minutes to 100°C, and hold for 45 minutes (Mars Xpress, CEM). The digested samples were
diluted up to 25 mL with deionized water. 45Sc was used as an internal standard for calibration, whereby the
calibration standards (0.01-100 ppb) were at the same final acid concentration as the samples. The standards
were prepared from single-element commercial standards (Ultra Scientific; certified reference material) and
checked with an alternate calibration standard prepared from a different lot or vendor (BDH). Polyatomic
interferences were eliminated by running the instrument in He mode. The detection limit was 0.01 ng/mL.
Finally, the results were adjusted for the process blank values.

A transmission electron microscopy (TEM) mesh 3HGC 500 (Ted Pella Inc.) was used to create a regular
pattern on mica disks. Titanium wire was wrapped along the top turns of the tungsten basket EVB12A3030W
(Ted Pella Inc.). The basket was heated at 60 VAC for less than one minute until the titanium wire
disappeared. The distance between the top turn of the basket and the mica disks was 100 mm. The Bruker
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Multimode 8 atomic force microscope (AFM) was used to measure the height profile of titanium patches on
the surface of mica disks.

Results

Implant prototype

The concept behind the implant prototype is depicted in Figure I, right panel. The body of the prototype is a
#10 bolt made of biocompatible zirconia ceramic. The bolt was initially completely coated with titanium in a
vacuum evaporation system.
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FIGURE 1: Left: a presumptive electrochemical process involving a
titanium dental implant. Electrical charges flow from the lower part
toward the top, where oxygen reduction occurs. The lower parts of the
implant give off electrons and dissolve as titanium ions. Right:
proposed new design, whereby the non-conductive body of the implant
is coated with electrically disconnected titanium stripes.

Electrically insulated stripes were produced by etching a part of the titanium coating with stripes protected
by masking. Figure 2 outlines the major steps in the fabrication of the implant prototype.

FIGURE 2: Steps for creating implant prototype.

From left to right: (i) placing nail polish mask in a lathe; (ii) masked bolts ready for etching; and (i) completed
prototype.

Microbial challenge

The implant prototype was challenged with a mixed microbial population obtained from a volunteer’s
subgingival plaque. The implant prototypes (and controls) were covered with a fiberglass sleeve to simulate
the peri-implant space. The rationale behind this approach is that fiberglass would restrict fluid convection,
and hence, maintain oxygen gradient, which presumably adequately simulates the peri-implant
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environment (Figure 5).

72.12

TI, NG/ML

I
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I

ZIRCONIA BOLT PTOTOTYPE THIMPLANT PTOTOTYPE TIIMPLANT

FIGURE 3: Microbial challenge in liquid media.

Top row, from left to right: (i) conceptual diagram of the microbial challenge; (ii) implant prototype placed into the
fiberglass sleeve matrix; and (iii) top view of the media after complete microbial growth. Bottom left:
concentrations of dissolved titanium detected in the medium. Bottom right: the amount of leached titanium
estimated by subtracting the background (see text).

Six prototypes, two commercial implants (solid titanium), and one zirconia bolt were subjected to the
microbial challenge, which was repeated two times. At the end of the experiment, some of the commercial
implants or prototypes appeared tilted or with excess liquid; such specimens were excluded from the
analysis (Table 7).
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Sample ID Titanium (ng/mL)
1 57.7
2 64.5
3 132
4 99.7
Challenge 1 5 82.1
6 80.6
7 88.7
8 84.6
9 202
10 56.9
11 99.2
12 67.7
13 62.4
Challenge 2 14 391
15 70
16 441
17 73.5
18 59.9

Specimen Notes
Zirconia bolt

Commercial implant Tilted”
Commercial implant Tilted”
Prototype

Prototype Tilted”
Prototype

Prototype

Prototype

Prototype Tilted”
Zirconia bolt

Commercial implant

Commercial implant

Prototype

Prototype Excess quuid*
Prototype

Prototype Excess quuid*
Prototype

Prototype

TABLE 1: Titanium concentrations measured after five days of microbial challenge.

*: excluded from the analysis.

The concentration of titanium was previously measured in the media at 11.33 * 2.08 ng/mL (mean * s.d.). To
estimate the amount of leached titanium, the value of the zirconia bolt specimen was subtracted from the
value of the prototype specimen. This procedure accounts for the titanium background of the medium and
the uncoated zirconia bolt. Moreover, 11.33 ng/mL was subtracted from the value of the commercial implant
specimen to account for the titanium background concentration in the medium. The results are graphically
shown in Figure 3 bottom left; two-tailed t-test p = 0.002 assuming equal variances (if variances are assumed

unequal, p = 0.162).

Thickness of the coating

Evaporating a comparable amount of titanium onto mica disks through a TEM mesh allowed for estimating
the thickness of the titanium coating on the prototype. Three different amounts were evaporated onto pairs
of disks and the thickness was measured (Table 2).
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Trial Titanium, mg Thickness, nm
1 83.9 114
1 83.9 133
2 36.1 139
2 36.1 113
3 161.5 311
3 161.5 309

TABLE 2: Thickness of titanium patches on mica disks as an estimation of the zirconia bolt

coating.

Figure 4 shows the AFM images of the titanium patches from trials one to three. Based on the measurements,
we estimate that the thickness of the titanium film of our implant prototypes was about 120 nm because
0.1108 g of titanium used in the coating was close to trial one.

o

T e L N
\s 1

\

FIGURE 4: Atomic force microscopy estimation of the thickness of the
titanium coating.

Top row: trials one to three; bottom row: a cross-section of a titanium patch.

Discussion

The proposed design for the implant prototype is based on the notion that a microbial fuel cell is formed in
the peri-implant space [6] (Figure 7). The electrochemical process within this cell is a reduction of oxygen
(cathode) and oxidation of organics and titanium (anode). It is important to understand that this fuel cell
does not generate any usable voltage, but rather is “shorted” by the body of the conductive titanium implant.
Peri-implant space is presumably filled with local microenvironments stacked along the axis of the implant.
These microenvironments generate electrochemical potential capable of driving the electrical current
leading to galvanic corrosion. The proposed design features ring-like titanium zones electrically insulated
from one another to prevent the electrical current and therefore the galvanic corrosion. Although the
galvanic current may flow along the vertical part of the ring, the concentration differences between the
microenvironments along the short vertical portion of the ring are expected to be much smaller compared to
the difference between one end of the implant and the other. Therefore, the concentration-driven voltage
difference (and therefore the current) through the ring is expected to be much smaller compared to the fully
conductive metallic implant. It can be argued that to solve the corrosion problem an inert electrically non-
conductive material can be used such as biocompatible zirconia. Nevertheless, the osseointegration
capability of zirconia is inferior to that of titanium in a dental implant setting (refer to a comparative review
of titanium vs. zirconia [13]). The ring-like titanium zones provide anchoring points for osseointegration. At
the same time, each titanium zone resides in not more than one microenvironment, hence, the lateral
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galvanic currents are diminished and so is the galvanic corrosion.

Taken together, the logic of the new design can be summarized as follows. The new design of the intraosseal
dental implant comprises a chemically inert, electrically non-conductive, screw-shaped body coated with
electrically separated titanium rings. This design utilizes a well-known property of titanium to integrate
with the bone, yet the electrical insulation of the titanium zones prevents the flow of galvanic corrosion
currents. Although the importance of galvanic corrosion to the development of peri-implant disease may be
disputed, existing evidence suggests that the corrosion does occur. It is yet to be determined whether the
corrosion is the cause or a consequence of peri-implantitis, however, the elimination of the corrosion will
prevent tissue reactions to its products in the peri-implant space.

The microbial challenge of dental implant materials in vitro is usually done with pure cultures or simple
microbial compositions of two to three species [14,15]. We rationalized that a realistic implant environment
is much more complex. Our previous work on titanium corrosion employed a volunteer’s dental plaque, and
it was shown that the microbial diversity in the in vitro setting is comparable to that of the original plaque
[6]. The same approach was undertaken in this study, although the volunteer was different. Ideally, various
plaques obtained from healthy individuals and those suffering from peri-implantitis should have been
tested; however, such analysis was beyond the scope of this preliminary report.

The belief that implants are a panacea to replace missing teeth and yield a better prognosis has been
rejected in comparative studies and systematic reviews. Although the reasons for failures are complex and
multifaceted, we attempted to focus on the unique electrochemical process in our study. This important
concept has not been fully evaluated. Future research in refining the zirconia-titanium composite implant
will involve reducing the size of titanium rings while increasing their number.

There are some limitations of our study. First, the duration of the microbial challenge was short. It would be
beneficial to increase the duration to up to several weeks. However, the long-term microbial challenge would
require some form of continuous growth medium supply and effluent collection (for titanium analysis).
Second, the fiberglass proxy for the bone socket may be considered quite a remote simulation. In future
research, a cadaver or an animal bone could be used to not only evaluate the extent of corrosion but also
assess the strength of zirconia-titanium binding.

Conclusions

We demonstrated a path forward toward a new design of a dental implant, which combines the best of the
two worlds: the inertness of zirconia ceramic and the osseointegrative capability of titanium. Practical steps
in the fabrication of such an implant were presented in our report. When challenged with complex oral
microbiota, a decreased leaching of titanium from the prototype was observed compared to a commercial
titanium implant. We believe that the interrupted corrosion-induced electrical currents will be key to the in
vivo success of the new implant design.
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