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Abstract
Background: Societal segregation of unvaccinated people from public spaces has been a novel and
controversial coronavirus disease 2019 (COVID-19)-era public health practice in many countries. Models
exploring potential consequences of vaccination-status-based segregation have not considered how
segregation influences the contact frequencies in the segregated groups. We systematically investigate
implementing effects of segregation on population-specific contact frequencies and show this critically
determines the predicted epidemiological outcomes, focusing on the attack rates in the vaccinated and
unvaccinated populations and the share of infections among vaccinated people that were due to contacts
with infectious unvaccinated people.

Methods: We describe a susceptible-infectious-recovered (SIR) two-population model for vaccinated and
unvaccinated groups of individuals that transmit an infectious disease by person-to-person contact. The
degree of segregation of the two groups, ranging from zero to complete segregation, is implemented using
the like-to-like mixing approach developed for sexually transmitted diseases, adapted for presumed severe
acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) transmission. We allow the contact frequencies for
individuals in the two groups to be different and depend, with variable strength, on the degree of
segregation.

Results: Segregation can either increase or decrease the attack rate among the vaccinated, depending on the
type of segregation (isolating or compounding), and the contagiousness of the disease. For diseases with low
contagiousness, segregation can cause an attack rate in the vaccinated, which does not occur without
segregation.

Interpretation: There is no predicted blanket epidemiological advantage to segregation, either for the
vaccinated or the unvaccinated. Negative epidemiological consequences can occur for both groups.

Categories: Epidemiology/Public Health, Medical Simulation, Infectious Disease
Keywords: quarantine, covid-19 isolation, contact frequency, sir model, vaccination-status-based segregation,
vaccination mandate, vaccinated, unvaccinated, covid 19, vaccine passports

Introduction
Models can be used to investigate infectious disease dynamics under different hypotheses about the
characteristics of a disease and the effects of health policy. In this endeavour, there are advantages to
working with the simplest possible but sufficiently realistic models [1,2], where one should exclude simple
models that are not sufficiently realistic for the intended application, either because of their structure or
because of incorrect assumptions about the underlying mechanisms. Following this approach, researchers
have extended the foundational simple susceptible-infectious-recovered (SIR)-type model to explore
diseases with birth and death dynamics, maternal- or vaccine-derived immunity, latency of infection,
patterns of contact mixing between different societal groups, and so on [3-7], and to study the effect of
isolating vulnerable individuals from the general population during a pandemic, in the absence of
vaccination [8].

Recently, SIR models of epidemic dynamics have been implemented with two interacting societal groups
(vaccinated and unvaccinated) to examine epidemic outcomes for variable degrees of interaction between
the two groups, including whether the unvaccinated put the vaccinated unduly or disproportionately at risk,
using epidemiological parameters intended to be representative of severe acute respiratory syndrome
coronavirus 2 (SARS‑CoV‑2) [9-12]. These prior implementations regarding groups differentiated by
vaccination status take the contact frequencies of the majority and socially excluded groups to be equal and
held constant, irrespective of the degree of segregation (or exclusion or “like-to-like mixing”), which is not
realistic.

Here, we implement population-specific contact frequencies that can be different for the two groups and
can either increase or decrease with increasing segregation. This is necessary because, for example, in many
actual regulatory policies, the excluded unvaccinated group is barred from public venues or services where
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people gather and from public transport where people are in close proximity for various durations. In
general, the contact frequency of the excluded group decreases with increasing segregation if isolation is in
effect, and increases with increasing segregation if the excluded individuals are crowded together.
Implementing this essential model feature gives rise to the more complex behaviour of the attack rates in
the vaccinated and unvaccinated populations (Av and Au, respectively), which can increase or decrease, or

rise to a maximum before decreasing, as the two groups are increasingly segregated. This is also true for the
share (Bv) of infections among vaccinated people that are due to contact with infectious unvaccinated

people.

This article was previously posted to the medRxiv preprint server on August 23, 2022, and revised versions
were posted to medRxiv on November 28, 2022, July 6, 2023, July 19, 2023, and October 31, 2023.

Materials And Methods
Model design
We adopt the standard SIR framework in a structure with two sub-populations. If a susceptible person (S)
comes into contact with an infectious person (I), the susceptible person can become infectious, and
infectious people eventually recover (R) and become permanently immune.

We divide the population into two groups: vaccinated and unvaccinated. Vaccination is “all or nothing”, such
that a proportion, VE, of the vaccinated population is immune (is in the R state from the outset of the
simulation), where the parameter VE represents vaccine efficacy. The model also includes a natural
immunity parameter, NI, equal to the proportion of unvaccinated that are immune from the outset due to
previous infection [9].

The model consists of the following six differential equations: 

Su, Iu, and Ru represent the number of susceptible, infectious, and recovered unvaccinated people, at time t.

Nu represents the total number of unvaccinated people. cu represents the population-specific contact

frequency (number of contacts per unit time) of unvaccinated people. βu is the probability that a susceptible

unvaccinated person becomes infected upon contact with an infectious person (regardless of whether the
infectious person is vaccinated or unvaccinated). γu is the rate at which infected unvaccinated people

recover from infection. The quantities Sv, Iv, Rv, Nv, cv, βv, and γv are defined equivalently, for vaccinated

people.

fij is the probability that a person of type i (either u or v) has contact with a person of type j (either u or v)

and is modulated by a parameter, η, which controls the degree of segregation between vaccinated and
unvaccinated people (see Appendix 1 for technical details). When η = 0, there is no segregation, and the two
groups mix randomly. When η = 1, there is complete segregation, such that the vaccinated only come into
contact with other vaccinated, and the unvaccinated only come into contact with other unvaccinated.

The parameter η follows from Garnett and Anderson [1], who modelled sexually transmitted disease spread
in a population divided into groups with different frequencies of sexual contact. They take the contact
frequency to be a constant characteristic of the individuals within a group. However, contact frequency is
not generally and solely an intrinsic individual characteristic [13].

In our model, the population-specific contact frequencies of the vaccinated and unvaccinated individuals ( cv

and cu, respectively) can increase, decrease, or remain constant as the two groups are segregated. We
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implement a new approach to achieve this: we keep the first two terms in Taylor expansions of cv and cu

versus η (cv =  (1 + mvη) and cu =  (1 + muη); see Equations A3 in Appendix 1). Thus, mv and mu determine the

degree of increase or decrease of the contact frequency in either group, as η is increased.

For example, when mu < 0, as segregation is increased, the contact frequency of unvaccinated people

decreases. This corresponds to a segregation policy that excludes unvaccinated people from public spaces
such as restaurants, cinemas, workplaces, airplanes, trains, etc. [14-17]. Conversely, mu > 0 corresponds to a

segregation policy that increases contact between unvaccinated people; for example, by requiring returning
unvaccinated travelers to stay in designated facilities [18-20].

In principle, the vaccinated and unvaccinated contact frequencies may be different even when the two
groups are completely unsegregated. The unsegregated (η = 0) contact frequencies are set by the parameters 

 and . 

As can be seen from the six differential equations defining our model, there are two “β parameters”, two “ c
parameters” and two “γ parameters” in our model. Since each β parameter always occurs as part of a
product with its respective c parameter, the β parameters can freely be set equal to 1. We set β v = βu = 1 in

this paper, without any loss of generality. This implies that, by definition (since β = 1), the contact
frequencies “c” in our model are conceptually for contacts that are of sufficiently close proximity and long
duration that an infection is guaranteed to occur when a susceptible and an infectious person meet [7,8]. For
a more contagious virus, more of an individual’s contacts are long and close enough that transmission would
be guaranteed, corresponding to higher  and . In other words, setting βv = βu = 1 is equivalent to

redefining “c” as the product “βc”, thus eliminating a redundant parameter, without any loss of generality.

The model of Fisman et al. [9] is the special case of our model with mu = mv = 0,  and γv = γu in

which case the equal contact frequencies of both vaccinated and unvaccinated remain constant regardless of
the level of segregation. Such an implementation does not represent how segregation has been applied
during the coronavirus disease 2019 (COVID-19) era in Canada and many countries [14-17,21], since
unvaccinated people were excluded from public spaces while vaccinated people were allowed access, thus
changing venues and opportunities for contact as segregation is imposed.

Throughout this paper, “contact frequency” refers to the frequency of infectious contacts, since the
probability of infection per infectious-susceptible contact is set equal to 1 without loss of generality (see
Appendix 1).

Model parameterization
The parameters of our model are listed in Table 1 and calculated quantities are given in Table 2. Technical
details of the model are in Appendix 1.
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Parameter description Symbol Typical value Bound

Degree of segregation of vaccinated and unvaccinated groups η (varied) 0 to 1

Contact frequency of vaccinated people when η = 0
300
contacts/yr

≥ 0

Contact frequency of unvaccinated people when η = 0
300
contacts/yr

≥ 0

Probability of transmission per contact between a susceptible vaccinated person and an infected
person

βv 1 0 to 1

Probability of transmission per contact between a susceptible unvaccinated person and an infected
person

βu 1 0 to 1

Degree of increase ( ) or decrease ( ) of vaccinated contact frequency as a function of η 0 ≥ -1

Degree of increase ( ) or decrease ( ) of unvaccinated contact frequency as a function
of η

varied ≥ -1

Rate of recovery from infection of a vaccinated person (per year) γv 73 yr-1 ≥ 0

Rate of recovery from infection of an unvaccinated person (per year) γu 73 yr-1 ≥ 0

Population fraction of vaccinated people Pv 0.8 0 to 1

Vaccine efficacy VE 0.8 0 to 1

Proportion of unvaccinated population with natural immunity NI 0.2 0 to 1

Population of entire society N 107 > 0

TABLE 1: Model parameters

Name Symbol

Attack rate in the vaccinated population Av

Attack rate in the unvaccinated population Au

Attack rate in the overall population (vaccinated and unvaccinated) At

Share of infections among vaccinated people that were due to contacts with infectious unvaccinated people Bv

TABLE 2: Quantities calculated from model results
Mathematical definitions of the quantities in Table 2 can be found in Appendix 1, Section A1.3.

Analysis
The attack rate among the vaccinated population is defined as the proportion of initially susceptible
vaccinated people who become infected during the epidemic:

where Sv(t0) is the number of susceptible vaccinated people at the beginning of the epidemic and Sv(tf) is the

number of susceptible vaccinated people remaining once there are no longer any infectious people in the
entire (vaccinated and unvaccinated) population. Au is defined equivalently, for the unvaccinated, replacing

the v subscripts with u in the equation Av above.

The overall attack rate for the full (vaccinated plus unvaccinated population) is:
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We also define Bv as the share of infections among vaccinated people that were due to contact with

infectious unvaccinated people (see Equation A6 of Appendix 1).

We focus on segregation types that are targeted at the unvaccinated group. We assume, for simplicity, that
segregation has no impact on the contact frequency of vaccinated people (mv = 0). We also assume that the

contact frequencies in both groups are the same when there is no segregation ( ). We use the same

values as used by Fisman et al. [9] for the remaining parameters: Pv = 0.8, VE = 0.8, NI = 0.2, γv = γu = 73 yr-1,

and N = 107. These values were intended to be representative of COVID-19 and vaccination; in particular,

the recovery rate of 73 yr-1 is equivalent to a recovery time of five days [22,23] and is assumed to be the same
for vaccinated and unvaccinated people.

Appendix 2 contains supplementary figures with results for different parameter combinations, including Pv ≠

0.8, mv ≠ 0 and . In all results in this paper, simulations were initiated with a seed number of 100

infectious individuals distributed proportionately among the two sub-populations.

Results
Figure 1 shows simulation results for a range of model parameters for different epidemiological conditions
and degrees and types of societal segregation. Each row of panels is for a fixed value of , which
decreases moving from the top row (Figures 1a.i-iv) to the bottom (Figures 1e.i-iv). The left column of
panels shows how the attack rate among the vaccinated population, Av, changes with the degree of

segregation, η. The second and third columns show Au and At as functions of η, respectively, and the right

column shows how Bv, the share of vaccinated infections that were due to contacts with unvaccinated

people, varies with η.
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FIGURE 1: Attack rates as functions of the degree of segregation of
vaccinated and unvaccinated populations
Attack rates Av (vaccinated population), Au (unvaccinated population), At (overall population) and share of
vaccinated infections that were due to contacts with unvaccinated people, Bv, as functions of the degree of
segregation, η, between the vaccinated and unvaccinated. Each row of panels shows Av, Au, At and Bv for a
particular choice of . Values of fixed model parameters are indicated at the top of the figure. For reference,
in a single-population (no vaccination) model, the corresponding R0 values for rows a-e of the figure are 8.2, 6.0,
4.1, 3.4 and 2.7, respectively.

Figures 1c.i-iv show results for a moderate value of contacts per year. For reference, in a single-population

(no vaccination) model,  = 300 contacts/year and γv = γu = 73 years-1 corresponds to a basic

reproduction number R0 = c/γ = 4.1.

In Figure 1c.i, when mu =-1 and mu = -0.5 (reflecting large and moderate degrees of exclusion and isolation

of unvaccinated people), the vaccinated attack rate, Av decreases with increasing segregation. However,

when mu > 0 (compounding of unvaccinated people) or mu = 0 (segregation has no influence on contact

frequency of unvaccinated people), there is a maximum in Av for moderate values of η. Therefore, with
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compounding segregation, large values of η are required for Av to be lower than its value for no segregation

(η = 0). Figure 1c.ii shows that the unvaccinated attack rate, Au, increases with segregation for anything

other than strong isolating segregation (mu approaching -1). This produces a maximum in the overall attack

rate, At, at moderate degrees of segregation, even for values of mu for which Av decreases monotonically (mu

= -0.5). Figure 1c.iv shows that Bv, the share of vaccinated infections that are due to unvaccinated people,

has a shape similar to Av(η, mu). In all panels, 20% of the total population is unvaccinated (Pv = 0.8; Table 1).

Figures 1c.i-iv, therefore, demonstrate that whether applying segregation increases or decreases the
vaccinated population attack rate depends on both the degree of segregation and how segregation affects
contact frequency.

Figures 1a.i-iv and Figures 1b.i-iv show results for larger . Compared to Figure 1c.i, in Figure 1a.i and
Figure 1b.i, Av does not increase much with η when mu > 0, and Av no longer has a maximum when mu = 0. It

can also be seen that Av increases with increasing  when there is no segregation (η = 0).

Reducing  (Figures 1d.i-iv and Figures 1e.i-iv) decreases Av(η = 0), and larger η can dramatically

increase Av. Even with an isolating segregation policy (mu = −0.5 in Figure 1d.i), Av is increased for moderate

values of η.

When  are small enough, (  = 200 contacts/year in Figure 1e.i, corresponding to R0 = 2.7 in a

single population (no vaccination) model), there is no epidemic among the vaccinated in the absence of
segregation (Av(η = 0) = 0). However, a non-zero vaccinated-population attack rate (Av > 0) occurs if η is

sufficiently large, and emerges regardless of whether one isolates or compounds the unvaccinated.
Therefore, for small enough values of 

, any segregation could increase infections among the vaccinated.

The main qualitative features of the above results for Pv = 0.8 hold for other values of Pv. Appendix 2

provides a detailed exploration of results for Pv = 0.1 through 0.99; and for two values of VE (0.4 and 0.8).

When VE is decreased, Av is not strongly influenced by η, regardless of mu; therefore, any beneficial effect of

segregation on Av is reduced as VE decreases.

Appendix 2 also explores . For example, when , the unvaccinated contact frequency is reduced
even when there is no segregation; increasing η can then increase Av substantially compared to the case of 

, holding all other parameter values constant (see panels a.i and b.i in figures A2.28 and A2.31 in
Appendix 2).

Discussion
Segregation can have substantially different and negative impacts on the outcome of an epidemic,
depending on the type and degree of segregation, and depending on cultural and population-density factors,
for example, that co-determine  and .

Segregation that compounds the unvaccinated (mu > 0 and mv = 0) generally causes an increase in the

vaccinated-population attack rate, Av, for small and intermediate degrees of segregation, η, while for large

η, Av decreases below its value in an unsegregated society. Segregation that isolates and excludes the

unvaccinated (mu < 0 and mv = 0) decreases Av for “more contagious viruses” (i.e. large , large R0);

however, for “less contagious viruses” (smaller , smaller R0), both isolating and compounding types of

segregation can increase Av beyond its value in an unsegregated society. For “viruses that are not very

contagious” (small , small R0), applying segregation can cause a sizeable epidemic among the

vaccinated even though virtually no vaccinated people would be infected in an unsegregated society.
Segregation increases the unvaccinated attack rate, Au, for compounding and moderately isolating types of

segregation, and Au is only decreased for strongly isolating segregation (mu approaching -1).

Except for large negative values of mu, and small unvaccinated population fractions, applying segregation

has the effect of increasing the frequency of unvaccinated-to-unvaccinated contacts (see figure A1.2 in
Appendix 1). This increases the overall probability of a susceptible-infectious interaction, since the
unvaccinated population has a higher fraction of susceptibles, and creates a form of core group dynamics
[24-26]. At the same time, increasing segregation shields the vaccinated population from the increased
prevalence of infection in the unvaccinated population. This trade-off causes the non-monotonic
relationship between Av and η. The same dynamic causes the emergence of an epidemic for large η when 

 (and thus R0) is small.
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We find that Bv, the share of vaccinated infections that are due to contact with unvaccinated people, follows

a similar trend to Av as a function of the degree of segregation, when segregation has no impact on the

vaccinated contact frequency (mv = 0). For this type of segregation, Av and Bv either increase or decrease

simultaneously with increasing η, depending on the value of mu, and Bv is minimized for complete

segregation. When mv = 0, there is no type or degree of segregation that reduces the vaccinated attack rate

while simultaneously increasing the risk to vaccinated people from unvaccinated people (Figure 1).
Therefore, there are no circumstances in which the unvaccinated cause a disproportionate risk to the
vaccinated, contrary to conclusions in Fisman et al. [9].

In contrast, when mv ≠ 0, such that segregation affects the contact frequencies of vaccinated people,

increasing segregation can cause Av to increase while Bv decreases and vice-versa (see figures A2.25 and

A2.26 in Appendix 2).

The impact of vaccination-status-based societal segregation on contact frequencies has not previously been
considered to our knowledge, even in network-based models in which unvaccinated people cluster together
in “cliques” or households [27-29].

Limitations
Our model assumes only two risk populations (vaccinated and unvaccinated), considers only the attack rates
on epidemic completion (Av, Au, and At), and takes the degree of segregation η to be time-independent,

without variation due to public holidays and such. It does not consider other outcomes such as death or
hospitalization, and does not include different age groups with different characteristics such as contact
frequencies or recovery times. Our model assumes an all-or-nothing VE, without waning immunity or
influence on infectiousness; and no possibility of reinfection. We do not consider the impact of segregation
policies on vaccination rates. SIR models and their variations are based on the paradigm of transmission due
to pairwise contact between a recently infected and a susceptible individual. However, this paradigm is
unable to account for important features of viral respiratory disease incidence; in particular, its rapid
emergence and disappearance occurring at essentially the same time at widely dispersed locations [30]. Air-
borne transmission via suspended aerosol particles is not directly compatible with pairwise transmission,
since it occurs in built environments where many people may transit or be present [31]. A related and
unavoidable limitation is the lack of reliable empirical evaluations of needed infectious contact frequencies,
which is important because our calculated outcomes are sensitive to the chosen contact frequency values.
Lastly, we do not consider the deleterious health impacts of the segregation policies themselves, which can
be significant [32-38].

Conclusions
In the two-population mixing-model framework, vaccination-status-based societal segregation can lead to
substantially different and counter-intuitive epidemic outcomes depending on the type and degree of
segregation, and depending on complex cultural and physical factors that co‑determine infectious contact
frequencies (i.e., the products βc). Negative epidemiological consequences can occur for either segregated
group, irrespective of the deleterious health impacts of the policies themselves.

Given the lack of reliable empirical evaluations of needed infectious contact frequency values, the
demonstrated outcome sensitivities to the infectious contact frequencies, and the intrinsic limitations of SIR
models in this application, we cannot recommend that SIR modelling be used to motivate or justify
segregation policies regarding viral respiratory diseases, in the present state of knowledge.

Appendices
Appendix 1
https://figshare.com/articles/preprint/Appendix_1_of_the_pre-
print_Compartmental_mixing_models_for_vaccination-status-
based_societal_separation_regarding_viral_respiratory_diseases_by_J_Hickey_D_G_Rancourt_posted_to_medRxiv_on_2023-
07-19_Version_4_https_www_medrxiv_org_content_1/24431836
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FIGURE 2: Figure A1.2 from Appendix 1
Normalized population-specific contact frequencies cu and cv, intra-population contact frequencies cuu and cvv,
and inter-population contact frequencies cuv and cvu, as functions of η, for the six values of mu explored in the
main text (each row of panels corresponds to a different value of mu), for mv = 0, and for Pv = 0.2 (left column of
panels), Pv = 0.5 (middle column) and Pv = 0.8 (right column).

Appendix 2
https://figshare.com/articles/preprint/Appendix_2_of_the_pre-
print_Compartmental_mixing_models_for_vaccination-status-
based_societal_separation_regarding_viral_respiratory_diseases_by_J_Hickey_D_G_Rancourt_posted_to_medRxiv_on_2023-
07-19_Version_4_https_www_medrxiv_org_content_1/24431848
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FIGURE 3: Figure A2.25 from Appendix 2
Av, Au, Bv, and Bu and functions of η. Each row of panels corresponds to a single choice of , and each
coloured line to a choice of mu as indicated in the legends. Parameter values Pv=0.8, VE=0.8, NI=0.2, mv=0, mu
= 1, γv = γu = 73. This figure is the same as Fig. 1 in the main text, except that mv = 1.
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FIGURE 4: Figure A2.26 from Appendix 2
Same as Fig. A2.25 from Appendix 2, except that mv = -1.
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FIGURE 5: Figure A2.28 from Appendix 2
, mv = 0, mu = 1, γv = γu = 73, VE = 0.8, NI = 0.2, various choices of   (see legend within left-column

panels), showing Av, Au, Bv, and Bu as functions of η.  is fixed for each row in the figure and decreases moving
down the rows.
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FIGURE 6: Figure A2.31 from Appendix 2
, mv = 0, mu = 1, γv = γu = 73, VE = 0.8, NI = 0.2, various choices of  (see legend within left-column

panels), showing Av, Au, Bv, and Bu as functions of . The weighted sum  is fixed for each row and
decreases moving down the rows.

Additional Information
Author Contributions
All authors have reviewed the final version to be published and agreed to be accountable for all aspects of the
work.

Concept and design:  Joseph Hickey, Denis G. Rancourt

Acquisition, analysis, or interpretation of data:  Joseph Hickey, Denis G. Rancourt

Drafting of the manuscript:  Joseph Hickey, Denis G. Rancourt

Critical review of the manuscript for important intellectual content:  Joseph Hickey, Denis G. Rancourt

2023 Hickey et al. Cureus 15(12): e50520. DOI 10.7759/cureus.50520 13 of 15

https://assets.cureus.com/uploads/figure/file/852465/lightbox_d95ab890990d11eeb427fd9cf8fc4791-Av_Au_Bv_Bu_vs_eta_vary_cv0cu0_fixed_weighted_avg_Pv0.8_VE0.8_NI0.2_v_mv0_mu1_gammav73_gammau73.png


Disclosures
Human subjects: All authors have confirmed that this study did not involve human participants or tissue.
Animal subjects: All authors have confirmed that this study did not involve animal subjects or tissue.
Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the
following: Payment/services info: All authors have declared that no financial support was received from
any organization for the submitted work. Financial relationships: All authors have declared that they have
no financial relationships at present or within the previous three years with any organizations that might
have an interest in the submitted work. Other relationships: All authors have declared that there are no
other relationships or activities that could appear to have influenced the submitted work.

References
1. Garnett GP, Anderson RM: Sexually transmitted diseases and sexual behavior: insights from mathematical

models. J Infect Dis. 1996, 174:S150-61. 10.1093/infdis/174.supplement_2.s150
2. Siegenfeld AF, Taleb NN, Bar-Yam Y: Opinion: what models can and cannot tell us about COVID-19 . Proc

Natl Acad Sci U S A. 2020, 117:16092-5. 10.1073/pnas.2011542117
3. Hethcote HW: The mathematics of infectious diseases . SIAM Rev Soc Ind Appl Math. 2000, 42:599-653.

10.1137/S0036144500371907
4. Keeling MJ, Rohani P: Modeling Infectious Diseases in Humans and Animals . Princeton University Press,

Princeton; 2008.
5. Martcheva M: An Introduction to Mathematical Epidemiology. Springer, New York; 2015.
6. Garnett GP, Anderson RM: Balancing sexual partnerships in an age and activity stratified model of HIV

transmission in heterosexual populations. IMA J Math Appl Med Biol. 1994, 11:161-92.
10.1093/imammb/11.3.161

7. Nold A: Heterogeneity in disease-transmission modeling. Math Biosci. 1980, 52:227-40. 10.1016/0025-
5564(80)90069-3

8. Hickey J, Rancourt DG: Predictions from standard epidemiological models of consequences of segregating
and isolating vulnerable people into care facilities. PLoS One. 2023, 18:e0293556.
10.1371/journal.pone.0293556

9. Fisman DN, Amoako A, Tuite AR: Impact of population mixing between vaccinated and unvaccinated
subpopulations on infectious disease dynamics: implications for SARS-CoV-2 transmission. CMAJ. 2022,
194:E573-80. 10.1503/cmaj.212105

10. Virk N: Epidemic Modeling of a Simple Respiratory Pathogen [Thesis] . University of British Columbia,
Vancouver, BC; 2022. 10.14288/1.0417535

11. Kosinski RJ: The failures of an ideal COVID-19 vaccine: a simulation study [PREPRINT] . medRxiv. 2021,
10.1101/2021.11.22.21266669

12. Fisman DN, Amoako A, Simmons A, et al.: Impact of immune evasion, waning and boosting on dynamics of
population mixing between a vaccinated majority and unvaccinated minority [PREPRINT]. medRxiv. 2023,
10.1101/2023.02.03.23285437

13. Morris M: A log-linear modeling framework for selective mixing . Math Biosci. 1991, 107:349-77.
10.1016/0025-5564(91)90014-A

14. Chuan Voo T, Savulescu J, Schaefer O, Ho Zhi Ling A, Tam CC: COVID-19 differentiated measures for
unvaccinated individuals: the need for clear goals and strong justifications. Vaccine. 2022, 40:5333-7.
10.1016/j.vaccine.2022.06.051

15. Ward JK, Gauna F, Gagneux-Brunon A, et al.: The French health pass holds lessons for mandatory COVID-19
vaccination. Nat Med. 2022, 28:232-5. 10.1038/s41591-021-01661-7

16. Wang B, Ping Y: A comparative analysis of COVID-19 vaccination certificates in 12 countries/regions
around the world: rationalising health policies for international travel and domestic social activities during
the pandemic. Health Policy. 2022, 126:755-62. 10.1016/j.healthpol.2022.05.016

17. Bardosh K, de Figueiredo A, Gur-Arie R, et al.: The unintended consequences of COVID-19 vaccine policy:
why mandates, passports and restrictions may cause more harm than good. BMJ Glob Health. 2022,
7:10.1136/bmjgh-2022-008684

18. COVID-19 Designated Quarantine Facilities: Staying at the facility . (2023). Accessed: October 25, 2023:
https://travel.gc.ca/travel-covid/travel-restrictions/isolation/designated-quarantine-facilities#archived.

19. Travelling to or within Canada? The Rules Have Changed. Here's What You Need to Know . (2021). Accessed:
October 25, 2023: https://www.cbc.ca/news/business/travel-rules-canada-government-1.6105707.

20. Queensland's Wellcamp COVID Quarantine Facility to Take First Arrivals This Weekend . (2022). Accessed:
October 25, 2023: https://www.abc.net.au/news/2022-02-04/covid-queensland-wellcamp-quarantine-
facility-first-guests/100804636.

21. Looi MK: Vaccine passports around the world . BMJ. 2021, 374:n2142. 10.1136/bmj.n2142
22. Wölfel R, Corman VM, Guggemos W, et al.: Virological assessment of hospitalized patients with COVID-

2019. Nature. 2020, 581:465-9. 10.1038/s41586-020-2196-x
23. Isolation and Precautions for People with COVID-19 . (2023). Accessed: October 25, 2023:

https://www.cdc.gov/coronavirus/2019-ncov/your-health/isolation.html.
24. Hadeler KP, Castillo-Chavez C: A core group model for disease transmission . Math Biosci. 1995, 128:41-55.

10.1016/0025-5564(94)00066-9
25. Boily MC, Lowndes C, Alary M: The impact of HIV epidemic phases on the effectiveness of core group

interventions: insights from mathematical models. Sex Transm Infect. 2002, 78 Suppl 1:i78-90.
10.1136/sti.78.suppl_1.i78

26. Brauer F, Castillo-Chavez C, Feng Z: Models with heterogeneous mixing (chapter 5) . Mathematical Models
in Epidemiology. Springer, New York; 2019. 179-225.

27. Salathé M, Bonhoeffer S: The effect of opinion clustering on disease outbreaks . J R Soc Interface. 2008,
5:1505-8. 10.1098/rsif.2008.0271

2023 Hickey et al. Cureus 15(12): e50520. DOI 10.7759/cureus.50520 14 of 15

https://dx.doi.org/10.1093/infdis/174.supplement_2.s150
https://dx.doi.org/10.1093/infdis/174.supplement_2.s150
https://dx.doi.org/10.1073/pnas.2011542117
https://dx.doi.org/10.1073/pnas.2011542117
https://dx.doi.org/10.1137/S0036144500371907
https://dx.doi.org/10.1137/S0036144500371907
https://press.princeton.edu/books/ebook/9781400841035/modeling-infectious-diseases-in-humans-and-animals
https://link.springer.com/content/pdf/10.1007/978-1-4899-7612-3.pdf
https://dx.doi.org/10.1093/imammb/11.3.161
https://dx.doi.org/10.1093/imammb/11.3.161
https://dx.doi.org/10.1016/0025-5564(80)90069-3
https://dx.doi.org/10.1016/0025-5564(80)90069-3
https://dx.doi.org/10.1371/journal.pone.0293556
https://dx.doi.org/10.1371/journal.pone.0293556
https://dx.doi.org/10.1503/cmaj.212105
https://dx.doi.org/10.1503/cmaj.212105
https://dx.doi.org/10.14288/1.0417535
https://dx.doi.org/10.14288/1.0417535
https://dx.doi.org/10.1101/2021.11.22.21266669
https://dx.doi.org/10.1101/2021.11.22.21266669
https://dx.doi.org/10.1101/2023.02.03.23285437
https://dx.doi.org/10.1101/2023.02.03.23285437
https://dx.doi.org/10.1016/0025-5564(91)90014-A
https://dx.doi.org/10.1016/0025-5564(91)90014-A
https://dx.doi.org/10.1016/j.vaccine.2022.06.051
https://dx.doi.org/10.1016/j.vaccine.2022.06.051
https://dx.doi.org/10.1038/s41591-021-01661-7
https://dx.doi.org/10.1038/s41591-021-01661-7
https://dx.doi.org/10.1016/j.healthpol.2022.05.016
https://dx.doi.org/10.1016/j.healthpol.2022.05.016
https://dx.doi.org/10.1136/bmjgh-2022-008684
https://dx.doi.org/10.1136/bmjgh-2022-008684
https://travel.gc.ca/travel-covid/travel-restrictions/isolation/designated-quarantine-facilities#archived
https://travel.gc.ca/travel-covid/travel-restrictions/isolation/designated-quarantine-facilities#archived
https://www.cbc.ca/news/business/travel-rules-canada-government-1.6105707
https://www.cbc.ca/news/business/travel-rules-canada-government-1.6105707
https://www.abc.net.au/news/2022-02-04/covid-queensland-wellcamp-quarantine-facility-first-guests/100804636
https://www.abc.net.au/news/2022-02-04/covid-queensland-wellcamp-quarantine-facility-first-guests/100804636
https://dx.doi.org/10.1136/bmj.n2142
https://dx.doi.org/10.1136/bmj.n2142
https://dx.doi.org/10.1038/s41586-020-2196-x
https://dx.doi.org/10.1038/s41586-020-2196-x
https://www.cdc.gov/coronavirus/2019-ncov/your-health/isolation.html
https://www.cdc.gov/coronavirus/2019-ncov/your-health/isolation.html
https://dx.doi.org/10.1016/0025-5564(94)00066-9
https://dx.doi.org/10.1016/0025-5564(94)00066-9
https://dx.doi.org/10.1136/sti.78.suppl_1.i78
https://dx.doi.org/10.1136/sti.78.suppl_1.i78
https://link.springer.com/chapter/10.1007/978-1-4939-9828-9_5
https://dx.doi.org/10.1098/rsif.2008.0271
https://dx.doi.org/10.1098/rsif.2008.0271


28. De-Leon H, Aran D: Over- and under-estimation of vaccine effectiveness [PREPRINT]. medRxiv. 2023,
10.1101/2022.01.24.22269737

29. Achitouv I: Propagation of epidemics in a polarized society: impact of clustering among unvaccinated
individuals [PREPRINT]. arXiv. 2022, 10.48550/arXiv.2206.00357

30. Hope-Simpson RE: The Transmission of Epidemic Influenza . Springer, New York; 1992. 10.1007/978-1-
4899-2385-1

31. Bulfone TC, Malekinejad M, Rutherford GW, Razani N: Outdoor transmission of SARS-CoV-2 and other
respiratory viruses: a systematic review. J Infect Dis. 2021, 223:550-61. 10.1093/infdis/jiaa742

32. Cohen S: Social relationships and health. Am Psychol. 2004, 59:676-84. 10.1037/0003-066X.59.8.676
33. Cohen S, Tyrrell DA, Smith AP: Psychological stress and susceptibility to the common cold . N Engl J Med.

1991, 325:606-12. 10.1056/NEJM199108293250903
34. Cohen S, Doyle WJ, Skoner DP: Social ties and susceptibility to the common cold . JAMA. 1997, 277:1940-4.

10.1001/jama.1997.03540480040036
35. Holt-Lunstad J, Smith TB, Layton JB: Social relationships and mortality risk: a meta-analytic review . PLoS

Med. 2010, 7:e1000316. 10.1371/journal.pmed.1000316
36. Holt-Lunstad J, Smith TB, Baker M, Harris T, Stephenson D: Loneliness and social isolation as risk factors

for mortality: a meta-analytic review. Perspect Psychol Sci. 2015, 10:227-37. 10.1177/1745691614568352
37. Valtorta NK, Kanaan M, Gilbody S, Ronzi S, Hanratty B: Loneliness and social isolation as risk factors for

coronary heart disease and stroke: systematic review and meta-analysis of longitudinal observational
studies. Heart. 2016, 102:1009-16. 10.1136/heartjnl-2015-308790

38. Elovainio M, Hakulinen C, Pulkki-Råback L, et al.: Contribution of risk factors to excess mortality in isolated
and lonely individuals: an analysis of data from the UK Biobank cohort study. Lancet Public Health. 2017,
2:e260-6. 10.1016/S2468-2667(17)30075-0

2023 Hickey et al. Cureus 15(12): e50520. DOI 10.7759/cureus.50520 15 of 15

https://dx.doi.org/10.1101/2022.01.24.22269737
https://dx.doi.org/10.1101/2022.01.24.22269737
https://dx.doi.org/10.48550/arXiv.2206.00357
https://dx.doi.org/10.48550/arXiv.2206.00357
https://dx.doi.org/10.1007/978-1-4899-2385-1
https://dx.doi.org/10.1007/978-1-4899-2385-1
https://dx.doi.org/10.1093/infdis/jiaa742
https://dx.doi.org/10.1093/infdis/jiaa742
https://dx.doi.org/10.1037/0003-066X.59.8.676
https://dx.doi.org/10.1037/0003-066X.59.8.676
https://dx.doi.org/10.1056/NEJM199108293250903
https://dx.doi.org/10.1056/NEJM199108293250903
https://dx.doi.org/10.1001/jama.1997.03540480040036
https://dx.doi.org/10.1001/jama.1997.03540480040036
https://dx.doi.org/10.1371/journal.pmed.1000316
https://dx.doi.org/10.1371/journal.pmed.1000316
https://dx.doi.org/10.1177/1745691614568352
https://dx.doi.org/10.1177/1745691614568352
https://dx.doi.org/10.1136/heartjnl-2015-308790
https://dx.doi.org/10.1136/heartjnl-2015-308790
https://dx.doi.org/10.1016/S2468-2667(17)30075-0
https://dx.doi.org/10.1016/S2468-2667(17)30075-0

	Viral Respiratory Epidemic Modeling of Societal Segregation Based on Vaccination Status
	Abstract
	Introduction
	Materials And Methods
	Model design
	Model parameterization
	TABLE 1: Model parameters
	TABLE 2: Quantities calculated from model results

	Analysis

	Results
	FIGURE 1: Attack rates as functions of the degree of segregation of vaccinated and unvaccinated populations

	Discussion
	Limitations

	Conclusions
	Appendices
	Appendix 1
	FIGURE 2: Figure A1.2 from Appendix 1

	Appendix 2
	FIGURE 3: Figure A2.25 from Appendix 2
	FIGURE 4: Figure A2.26 from Appendix 2
	FIGURE 5: Figure A2.28 from Appendix 2
	FIGURE 6: Figure A2.31 from Appendix 2


	Additional Information
	Author Contributions
	Disclosures

	References


