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Abstract
Background

Drug-induced liver injury is a common cause of acute liver failure. Isoniazid (INH) is used as a first-line
treatment for tuberculosis. Clinical and experimental studies have reported abnormal liver function after
INH therapy. Lagerstroemia speciosa Pers., commonly known as banaba, has been traditionally used to treat
various ailments including diabetes and obesity due to its antioxidant and anti-inflammatory properties.

Aim
To investigate the hepatoprotective effect of ethanolic banaba leaf extract (EBLE) against INH-induced
hepatotoxicity in rats.

Materials and methods

A total of 30 male Wistar albino rats (150 - 200 g) were divided into five groups (n = 6). Group I rats were
served as a control and were administered dimethyl sulfoxide for the first 30 days and water for the next 30
consecutive days. Group II rats were administered INH (50 mg/kg, p.o.) once in the first 30 consecutive days
and sacrificed at Day 30. Group III rats were administered INH for 30 consecutive days and left without
treatment for the next 30 days. In Groups IV and V, rats were post-treated orally with EBLE 250 and 500
mg/kg, p.o. (0.3 ml/rat) for 30 days after INH administration. At the end of Day 60, the remaining group of
animals were sacrificed. The blood and liver tissues were collected. The marker enzymes of hepatotoxicity,
oxidative stress markers, inflammatory markers, and histopathology were analyzed.

Results

INH administration induced significant elevation of marker enzymes (aspartate transaminase, alanine
transaminase, alkaline phosphatase, lactate dehydrogenase, bilirubin, gamma-glutamyl transpeptidase) of
hepatotoxicity in the serum. This treatment also increased lipid peroxidation and proinflammatory

marker expression (tumor necrosis factor-alpha, transforming growth factor-beta, and nuclear factor kappa
B (NF-kB) except inhibitor of NF-kB) and decreased antioxidants such superoxide dismutase, catalase, and
glutathione in the liver tissue. All these abnormalities were significantly mitigated after treatment with
EBLE.

Conclusion

The results of this study suggest that EBLE can be used for INH-induced hepatotoxicity.

Categories: Gastroenterology, Therapeutics
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Introduction

Drug-induced liver injury (DILI) is one of the major causes of acute liver failure (ALF). DILI is normally a
dose-related phenomenon; however, it can also occur in the context of therapeutic doses. DILI occurs in a
significant number of people exposed to drugs and generally is a challenging task for diagnosis and drug
development [1]. More than a thousand drugs used in clinical practice are suspected to induce liver damage,
of which 353 medications were convincingly related to liver injury [2].

DILI causes either apoptotic or necrotic liver cell death. The mechanisms of cell death and the severity of
liver injury largely depend on the drug. Hepatic disruption accounts for 3.5-9.5% of all cases of adverse drug
reactions and up to 14.7% of fatal adverse reactions. Liver diseases account for 3.5% of deaths globally.
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Given the population burden, India accounts for one-fifth (18.3%) of all cirrhosis deaths worldwide [3].
Particularly, there are certain drugs associated with hepatotoxicity that are prevalent in clinical practice. For
instance, dapsone, acetaminophen, antiviral drugs, and anti-tubercular drugs like isoniazid (INH),
rifampicin, and pyrazinamide cause hepatocellular degeneration [4].

Tuberculosis (TB), a major medical problem worldwide, continues to remain a major public health problem
in developing countries, especially in India. INH and rifampicin are used as first-line drugs in the treatment
of TB. However, consumption of INH doses of 20 mg/kg and >40 mg/kg are reported to cause acute and
chronic toxicity in humans. Prolonged clinical treatment with INH is the most common cause of liver injury
in patients receiving anti-TB therapy [4]. In the liver, N-acetyltransferase 2 enzyme metabolizes INH to
acetyl INH, which subsequently hydrolyses into acetyl-hydrazine (AcHz), which is further oxidized by
cytochrome P450 2E1 (CYP2E1) to form highly reactive acetylating hepatotoxic intermediates, causing
hepatocellular degeneration [5]. Therefore, AcHz and hydrazine (Hz) derived metabolites were suggested to
be responsible for INH-induced injury to the liver. The most characteristic features of serious INH-induced
liver injury include hepatocellular injury with multilobular necrosis and mononuclear cell infiltration with
early onset of steatosis. During biotransformation in the liver, INH induces reactive oxygen species (ROS)
generation, which is associated with its hepatotoxic potential [6]. INH has been reported to interfere with
pro-oxidant and antioxidant homeostasis, thereby stimulating the level of pro-oxidants or diminishing
intracellular antioxidant levels by generating oxidative stress [7]. Hepatic disturbances due to DILI can alter
homeostasis, which can lead to ALF. Therefore, there is an urgent need to identify the hepatoprotective
principle that can be employed to combat INH-induced hepatotoxicity in the liver.

Lagerstroemia speciosa Pers. (Lythraceae), a tropical deciduous tree generally referred to as banaba, contains
many polyphenolic compounds. These include ellagic acid and its derivatives, tannins, triterpenes, corosolic
acid, flavones, leutins, quercetin, sitosterol, and glycosides [8, 9]. In our previous studies, we have reported
the presence of berberin, ellagic acid, and gallic acids in ethanolic banaba leaf extract (EBLE) [10]. Tea
derived from banaba leaves has historically been used in Southeast Asia to treat diabetes mellitus. Recent
studies have reported the anti-diabetic, anti-inflammatory, antioxidant, antiviral, and antifibrotic potential
of EBLE in animal studies [11]. Ethanolic extract of banaba petals was shown to possess antioxidant and free
radical scavenging properties in carbon tetrachloride-induced liver injury in mice [12]. Our recent vitro
studies have discussed the pro-apoptotic and cell cycle disrupting the ability for EBLE in liver cancer cells
[10, 13]. The hepatoprotective efficacy of EBLE on INH-induced hepatotoxicity has not been studied.
Therefore, in this study, EBLE was used to investigate the aspects of antioxidant and hepatoprotective
effects against INH-induced hepatotoxicity in rats.

Materials And Methods

Drugs and plant extract

Isoniazid was purchased from Sigma chemicals (Hyderabad, India). EBLE was readily available and
purchased from M/S. Quimico, herbal extract manufacturer, Bengaluru, India (Batch no. KAN/BE/1801009).
According to the manufacturer’s certificate of analysis, EBLE contains 20% corosolic acid. The concentration
of the extract was adjusted to 250 and 500 mg/kg for animal treatment. All the other chemicals used in this
study were purchased from Sigma-Aldrich Company.

Experimental animals

Male Wistar rats (150-200 g) were used for the study. They were housed in clean polypropylene cages and
maintained under standard laboratory conditions at a temperature of 22 = 2°C and 12 hours with an
alternating light-dark cycle. They were allowed free access to a standard pellet diet and water ad libitum. All
the experimental procedures were conducted after obtaining necessary permission from the Institutional
Animal Ethics Committee of Malla Reddy Institute of Medical Sciences, Hyderabad, India (3/IAEC/2017).

Experimental design

Thirty animals were divided randomly into five groups (n = 6). Group I rats were administered dimethyl
sulfoxide (DMSO) p.o. for the first 30 days and distilled water for the next 30 days and served as control.
Group II rats were administered INH (50 mg/kg, p.o.) [14] once daily for 30 days and sacrificed on day

30th. Group III rats were administered INH, once daily for the first 30 days and were left without treatment
for the next 30 days. Group IV and V rats received INH for 30 days once daily and were post-treated once
daily with EBLE at a dose of 250 and 500 mg/kg b.w., p.o. (0.3 ml/rat) respectively [15] for the next 30

days. Except for Group II (sacrificed at the end of Day 30), all the animal groups were sacrificed at the end of
Day 60 (Figure 7). INH was dissolved in DMSO, and EBLE was dissolved in distilled water.
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FIGURE 1: The schematic experimental design shows days of isoniazid
and ethanolic banaba leaf extract administration in rats

Red arrows indicate days of blood withdrawal.

DMSO: dimethyl sulfoxide; DW: distilled water; INH: isoniazid; EBLE: ethanolic banaba leaves extract

The blood was collected at the end of Days 15, 30, 45, and 60 from overnight fasted rats to investigate the
progression of hepatotoxicity by analyzing serum marker enzymes. The blood samples were centrifuged for
10 minutes at 1500 rpm and serum was separated and stored at -20°C until the analysis was carried out. At
the end of the study, livers were excised, washed in ice-cold saline, blotted to dryness, and weighed. Liver
tissues were homogenized with cold saline. After centrifugation at 3500 rpm for 10 minutes at 4°C, the
supernatant was collected to measure superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT)
activities and malondialdehyde (MDA) content in the liver.

Estimation of serum marker enzymes of hepatotoxicity

Serum samples were used for the analysis of aspartate and alanine transaminases (AST and ALT), alkaline
phosphatase (ALP), y- glutamyl transpeptidase (GGT), lactate dehydrogenase (LDH) activities, and bilirubin
content and were estimated according to the instructions of commercially available diagnostic kits (Enzo
Life Sciences Inc., Farmingdale, NY).

Estimation of MDA

MDA content in liver tissue was determined by thiobarbituric acid (TBA) reaction as described by Okhawa et
al. (1979) [16]. Liver tissue homogenate was mixed with 1.5 ml of 20% acetic acid, 0.2 ml of sodium dodecyl
sulfate, and 1.5 ml of TBA was added in a tube and was made up to 4 ml with distilled water and then heated
for 60 minutes at 95°C. After cooling, 4 ml of butanol-pyridine mixture was added and shaken well. After
centrifugation at 4,000 rpm for 10 minutes, the organic layer was taken and its absorbance was measured at
532 nm.

SOD assay

To the tubes containing 0.5 ml of carbonate buffer, 0.5 ml of EDTA solution (the required amount of the
homogenate-containing enzyme) was added and the final volume was made up to 2.5 ml. The reaction was
initiated by the addition of 0.4 ml of epinephrine and the increase in absorbance at 480 nm was measured in
a Shimadzu UV spectrophotometer (Shimadzu Corp., Kyoto, Japan). The enzyme activity was expressed as
units/mg protein [17].

CAT assay

About 0.05 ml of tissue homogenate was added to 1.2 ml of the phosphate buffer. To this, 1 ml of hydrogen
peroxide (HyOy) (0.2 M) was added to start the enzyme reaction. The decreased absorbance was taken at 620

nm for every 30-second interval for three minutes. The enzyme blank was used with 1 ml of distilled water.
The catalase activity was measured in nM of HyO, decomposed/min/mg protein [18].

Estimation of GSH

Reduced glutathione was assayed by the method of Moron et al. (1979) [19]. To 0.5 ml of tissue homogenate,
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125 pl of 25% trichloroacetic acid (TCA) was added to precipitate proteins. The tubes were cooled in ice for
five minutes and the mixture was further diluted with 0.6 ml of 5% TCA and centrifuged at 9000 RCF for 10
minutes. Then, 0.3 ml of the aliquot was made up to 1 ml with 0.2 M sodium phosphate buffer (pH 8.0) and
freshly made 5,5-dithio-bis-(2-nitrobenzoic acid) reagent (2 ml). After 10 minutes of incubation, the
intensity of the yellow color produced was measured using a spectrophotometer at 412 nm.

Gene expression analysis

TRIzol reagent was used to extract total RNA from liver tissue according to the manufacturer’s instructions
(Invitrogen, ThermoFisher Scientific, Waltham, MA). The quality and quantity of total RNA were detected by
a spectrophotometer (NANODROP200, ThermoFisher Scientific). The primers for tumor necrosis factor-
alpha (TNF-a), transforming growth factor-beta (TGF-), nuclear factor kappa B (NF-kB), and IkB (inhibitor
of NF-kB) were synthesized from Sigma Genosys (Bangalore, India) (Table 7). The M-MuLV reverse
transcriptase and RNase inhibitors were purchased from Thermo Scientific. PCR amplification was carried
out on an Eppendorf Mastercycler® ep (Eppendorf AG, Hamburg, Germany). The PCR was done using initial
denaturation at 94°C for one minute, 33 cycles of 94°C for 40 seconds, 65°C for 40 seconds, 72°C for 60
seconds, and a final extension at 72°C for two minutes. The amplified products were separated on a 1.5%
agarose gel in tris buffer at 75V for three hours. The gel was stained with ethidium bromide and the
amplified product was visualized and photographed on the gel documentation system. The location of a
predicted product was confirmed by using a 100bp ladder (Applied Biosystems, ThermoFisher Scientific) as a
standard-size marker. The gel was then photographed under UV transillumination. The intensity of PCR
products was measured using a video image analysis system (Kodak Digital Science, Rochester, NY). The
signal for each transcript was standardized against that of the B-actin mRNA from each sample and the
results were expressed as transcript/B-actin mRNA ratio.

53 Base pairs
Forward:5-GCAGATGGCCCATACCTTCA-3'
Reverse: 5-CACCATGTCCTTGGGTCCAG-3' %
Forward: 5'-GCTCGTCGTCGACAACGGCTC-3'
Reverse: 5'-CAAACATGATCTGGGTCATC-3' 0
Forward: 5-GCCTCTTCTCATTCCTGCTTG-3'
Reverse: 5-CTGATGAGAGGGAGGCCATT-3' e
Forward: 5'- TCTTCCAGCCATCCTTCTTG -3°
Reverse: 5°- CGGTGATTTCCTTCTGCATT -3° 1o
Forward: 5-CCGATGGGTTGTACCTTGTC -3'
Reverse: 5-GGGCTGGGTAGAGAATGGAT -3' 7%
Forward: 5'- TCATGAAGTGTGACGTTGACA -3°
Reverse: 5'- CCTAGA AGCATTTGCGGTGCA -3’ o
Forward: 5-TGGCTCATCGTAGGGAGTTT-3'
Reverse: 5-CTCGTCCTCGACTGAGAAGC-3' 0
Forward: 5-CGTGGGCCGCCCTAGGCACCA-3'

638

Reverse: 5-TTGGCCTTAGGGTTCAGGGGG-3'

TABLE 1: Primers used in this study

NF-kB: nuclear factor kappa B; TNF-a: tumor necrosis factor a; TGF-B: transforming growth factor B; IkB: inhibitor of NF-kB.

Histopathology of liver tissue

The liver tissue was fixed in 10% formalin, dehydrated in gradual ethanol (50-100%), cleared in xylene, and
embedded in paraffin wax. The wax sections with 5-6 micron thickness were made using a rotary microtome.
These tissue sections were then stained with hematoxylin and eosin, Masson’s trichrome, and Sudan black
B[20].
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Statistical analysis

Data obtained from the experiments are expressed as mean * SD for six animals. The data were subjected to
one-way analysis of variance (ANOVA); post hoc multiple comparison tests to assess the degree of
significance of the difference between means of various treatment groups were performed by employing
Tukey’s test, using SPSS software v. 22.0 (IBM Corp., Armonk, NY). The p-value < 0.05 was considered
significant.

Results

Effect of EBLE on INH-induced changes in hepatotoxic marker enzymes
and bilirubin in serum

In Group II rats, 30 days of INH administration caused significant (p< 0.001) elevation of serum marker
enzymes of hepatotoxicity such as AST, ALT, ALP, LDH GGT, and bilirubin as compared to the Group I control
rats. Interestingly, INH administration caused a nearly three-to-fourfold increase in liver marker enzymes,
as measured at the end of Days 15 and 30. The hepatotoxic potential of Group II rats (sacrificed at the end of
30 days) after INH administration was similar to that of Group III (left without treatment after 30 days of
INH administration) and hence, INH + EBLE 250 mg/kg (Group IV) and INH + EBLE 500 mg/kg (Group V)
post-treated groups were compared to Group III. As compared to Group III rats, EBLE treatments for 30 days
after INH administration caused a significant fall (p < 0.001) in the elevation of all of the above marker
enzymes and bilirubin in the serum (Figures 2-3).
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FIGURE 2: Effect of EBLE on INH-induced changes seen in the marker
enzymes of hepatotoxicity (AST ALT, and ALP)

Reduced levels of AST, ALT, and ALP in the serum of rats upon EBLE treatment. INH and INH+REC group rats
were sacrificed on Days 30 and 60, respectively. 2p < 0.001 vs control; °p < 0.001 vs INH+REC.

EBLE: ethanolic banaba leaves extract, INH: isoniazid: REC: recovery; AST: aspartate transaminase; ALT: alanine
transaminase; ALP: alkaline phosphatase
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FIGURE 3: The effect of EBLE on INH-induced changes seen in the
marker enzymes of hepatotoxicity (LDH, GGT, and bilirubin)

Reduced levels of LDH, GGT, and bilirubin in the serum of rats upon treatment with EBLE. INH and INH+REC
group rats were sacrificed on Days 30 and 60, respectively.

ap < 0.001 vs control; Pp < 0.001 vs INH+REC.

EBLE: ethanolic banaba leaves extract, INH: isoniazid: REC: recovery; LDH: lactate dehydrogenase;
GGT: gamma-glutamyl transpeptidase

Effect of EBLE on INH-induced changes in lipid peroxidation and
antioxidants in liver tissue of rats

In Groups II and III rats, INH administration for 30 days caused a significant (p < 0.001) increase in liver
MDA level as compared to the Group I control rats. INH treatments also caused a significant (p < 0.001)
decrease in SOD and CAT activities and GSH content in the liver tissue of rats (Group II and III). EBLE
administered at doses of 250 mg/kg and 500 mg/kg as post-treatments for 30 days after INH administration
significantly reduced MDA levels (p < 0.001) and replenished GSH content in liver tissue as compared to
Group III rats. The EBLE administration at 250 mg/kg mildly reversed SOD activity (p < 0.05), whereas EBLE
at a dose of 500 mg/kg significantly reversed SOD activity (p < 0.01). The EBLE post-treatment at a dose of
500 mg/kg replenished CAT and GSH highly significantly to near normalcy (p < 0.001) and also significantly
decreased INH-induced CAT activity in liver tissue at a dose 250 mg/kg (p < 0.01) (Table 2).
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Treatment Groups (n=6)

Group |
Group Il
Group Il
Group IV

Group V

Parameters

LPO

(nmol/mg protein)
3.26 +0.30

9.33 +0.62 a***
10.79 + 0.60 a***
8.80 + 0.46 b***

6.81 + 0.41 b***

SOD

(Units/mg protein)
10.58 + 0.55
4.05+0.55 a***
3.96 +0.09 a***
4.86 +0.61 b*

5.21+0.33 b**

CAT

(Units/mg protein)
7.50 +0.43

2.62 +0.67 a***
2.27 + 0.67 a***
3.56 +0.32 b**

4.36 +0.24 b*™*

GSH

(Units/mg protein)
7.43 +0.50

2.86 + 0.13 a***
1.47 + 0.43 a***
2.90 + 0.34 b***

4.02 +0.61 b*™*

TABLE 2: Effect of EBLE against INH-induced changes in the status of enzymic and non-enzymic
antioxidants in the liver tissue of rats

Values presented are mean + S.D. for ‘n’ no. of animals mentioned in parenthesis.

Group |: Control; Group II: INH alone treated rats; Group Ill: INH+ Recovery; Group IV: INH+EBLE 250 mg/kg; Group V: INH+EBLE 500 mg/kg.

INH and INH+REC group rats were sacrificed on Days 15 and 30, respectively. Multiple comparison between treatment groups was performed by Tukey's

test.

a refers to the control group compared to INH and INH+REC; b refers to the INH+REC group compared to INH+EBLE 250 mg and INH+EBLE 500 mg;

*p < 0.05, **p < 0.01, ***p < 0.001.

LPO: lipid peroxidation; SOD: superoxide dismutase; CAT: catalase; GSH: reduced glutathione

Effect of EBLE on INH-induced changes in the pro-inflammatory marker
genes expressions in liver tissue

In this study, INH administration for 30 days caused significant (p < 0.001) upregulation of pro-
inflammatory gene expressions such as TNF-a, TGF-B, and NF-«kB and downregulation of IkB gene
expression in the liver tissue of rats. After INH administration for 30 days, EBLE post-treatment with 250
mg/kg (p < 0.05) and 500 mg/kg (p < 0.01) doses caused significant downregulation of TNF-a gene
expression. EBLE post-treatment at doses of 250 mg/kg and 500 mg/kg caused significant (p < 0.001)
downregulation of TGF-f and NF-kB gene expressions with a concomitant upregulation (p < 0.001) of IkB
gene expression (Figure 4).
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FIGURE 4: Effect of EBLE on INH-induced changes in the expression of
inflammatory and fibrosis genes

Reduced level of inflammatory and fibrosis genes in the EBLE treatment on INH-induced rats of liver tissue.

A: Qualitative expression of the above genes: 1-Marker; 2-Control; 3-INH; 4-INH+REC; 5 INH+EBLE 250 mg/kg;
6-INH+EBLE 500 mg/kg.

B: Quantitative analysis of gene expression: @p < 0.001 vs control; ®p < 0.05;°p < 0.01;Pp < 0.001 vs
INH+REC group

TNF: a-tumor necrosis factor-a; TGF-B: transforming growth factor-; NF-kB: nuclear factor kappa B; IkB: inhibitor
of NF-kB

Effect of EBLE on INH-induced histopathological changes in liver tissue

The liver architectural distortion was investigated by H and E staining. The control liver tissues showed a
normal architecture of the liver with an intact central vein. The liver tissue of INH-administered rats (Group
IT) showed degeneration of hepatocytes along with sinusoidal dilatation. The liver tissues of Group III rats
showed sinusoidal dilatation along with hepatocyte degeneration and centrilobular necrosis with infiltration
of inflammatory cells. The liver tissues of Group IV rats post-treated with EBLE 250 mg/kg showed mild
periportal inflammation. The liver tissues of Group V rats post-treated with EBLE 500 mg/kg showed a
normal portal vein and normal hepatocytes.

Masson's trichrome staining was performed to assess the fibrotic changes in the liver tissue. Control rat liver
tissue showed normal liver architecture with no extracellular matrix accumulation. Group II and III rats'
liver tissues showed mild peribiliary fibrosis (PBF) with sinusoidal dilatation. The liver tissue of Groups IV
and V rats, which were post-treated with EBLE 250 mg/kg and 500 mg/kg dose showed moderate PBF and
mild PBF with mild inflammation respectively.

After Sudan black staining, the control liver tissue showed no appearance of black color fat droplets. Group
1T and Group III rat liver tissues showed the appearance of black color fat droplets. The liver tissue of Groups
IV and V rats which were post-treated with EBLE (250 mg/kg and 500 mg/kg) did not show a black stain of
lipid droplets (Figure 5).
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FIGURE 5: Histopathology of the liver

Hematoxylin and eosin (H & E) staining (20x), scale bar-50um

The control shows the normal liver architecture. In the isoniazid (INH) alone group, the foci of hepatocyte
degeneration and sinusoidal dilatation were observed. In the INH+REC group, sinusoidal dilatation with
degeneration (red arrow) and foci of centrilobular necrosis with infiltration of inflammatory cells (white arrow) were
observed; in INH+EBLE 250 mg/kg group, the foci of periportal inflammation was observed; in INH+EBLE 500
mg/kg group the rat liver tissue shows normal portal vein and normal hepatocytes (yellow arrow).

Masson'’s trichrome staining (MTC)

The control rat's liver tissue shows normal liver architecture, and the INH alone group shows mild peribiliary
fibrosis (PBF). INH+REC group shows moderate PBF with sinusoidal dilatation, in the INH+EBLE 250 and 500
mg/kg groups, the white arrow shows normal hepatocytes, and the red arrow shows moderate and mild peribiliary
inflammation with fibrosis.

Sudan Black (SB) staining

Control shows no appearance of black color fat droplets. The INH and INH+REC groups show black color fat
droplets. The liver architecture of the INH+EBLE group does not contain a black stain of lipid droplets.

Discussion

Clinical studies in the past revealed that the cure and date rates of patients treated with anti-TB drugs were
11.42% and 40.9%, respectively. However, when the patients were administered anti-TB drugs (e.g. INH)
along with plant formulations such as silymarin and curcumin, the cure and death rates were 41.3% and
3.8%, respectively [21]. Clinically, INH-induced liver toxicity is usually asymptomatic. Measuring serum
markers of hepatocyte injury such as AST, ALT, and ALP indicate the onset of hepatic damage. During
hepatocellular degeneration, injured hepatocytes release these intracellular enzymes in the blood that cause
elevation of liver transaminases (AST and ALT), ALP, LDH, and GGT [22]. INH metabolism in the liver by
CYP2E1 causes the liberation of excessive intracellular free radical accumulation. Increased intracellular
ROS is responsible for oxidative stress in hepatocytes and thus plays an important role in INH-induced
hepatotoxicity. Liberation of ROS and other free radicals are associated with the process of LPO, oxidative
stress, and loss of membrane integrity, which is collectively responsible for liver injury [23]. In light of these
reports, it is likely that INH-induced oxidative damage may result in the acceleration of LPO and cause
injury to the hepatocyte membrane, and this could be the most probable cause for the INH-induced elevation
of marker enzymes of hepatotoxicity in serum. Many plant extracts and their derived phytochemicals have
been studied to evaluate their efficacy versus anti-TB drug-induced hepatic damage in different animal
models [11].

The hepatoprotective effect of those herbal extracts was mainly attributed to the hepatocellular membrane
stabilizing properties due to the presence of several phytochemicals. These phytochemicals are implicated in
the restoration of membrane stability and recovery from hepatic damage [11]. In our previous studies [10,
13], we have reported the presence of berberine, gallic acid, and ellagic acid in EBLE. Therefore, the fall in
liver marker enzymes in serum after EBLE treatments can be attributed to the membrane-stabilizing
properties of the above phytochemicals.

The metabolites of INH act as initiators of lipid peroxidation that cause hepatic necrosis. In this study, INH
administration induced lipid peroxidation and concomitantly decreased first-line antioxidants such as SOD,
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CAT, and GSH in the liver tissue of rats indicating the onset of oxidative stress. SOD scavenges superoxide
anions and forms HyO,. CAT is an enzymatic antioxidant and it degrades H,O, to protect tissues from

hydroxyl radicals. Therefore, a decrease in SOD activity is a sensitive indicator of oxidative stress-induced
hepatic injury. An imbalance between the overall pro-oxidant and antioxidant activity leads to oxidative
stress. During oxidative stress, the antioxidant enzymes were produced in large amounts to scavenge the
free radicals [24]. Previous studies also reported the diminution of GSH and decreased glutathione-S-
transferase, CAT, and SOD activities after INH administration induced oxidative stress in rats [25]. The
increased LPO upon INH administration could be due to the liberation of Achz and Hz and other free radicals
after its metabolism by CYP2E1. The decreased first-line antioxidant defense upon INH administration could
be due to the overutilization of these enzymes against free radicals liberated by INH metabolism.
Phytochemicals are effective in the management of INH-induced toxicity as they mainly act on cytochrome
P450 and reduce INH-induced free radicals [20]. Previous studies have also used banaba extract against
oxidative stress-induced hepatotoxicity, in which banaba extract administration was shown to offer
hepatoprotective activity in CCl4-induced hepatotoxicity [13]. EBLE has also been reported to possess potent

antioxidants, free radical scavenging activities, and hepatocellular membrane-stabilizing properties due to
the presence of triterpenoids and sterols [14]. Therefore, the presence of triterpenoids, such as corosolic
acid, could be attributed to the antioxidant activity of EBLE.

TNF-a is an inflammatory cytokine produced by macrophages that regulates macrophage function and plays
a central role in inflammatory cell activation and hepatic inflammation. TNF-a up-reregulation also induces
NF-kB activation-related signaling transduction pathways during inflammation. NF-kB is involved in the
pro-inflammatory signaling pathway, which is activated by several proinflammatory cytokines. It has been
reported that the activation of NF-kB plays an important role in the initiation and progression of INH-
induced liver damage [26]. NF-kB is composed of dimers, which are inactive in the cytoplasm, and it binds to
IkB, which is an inhibitory protein. The inhibitory protein IkB on stimulation is phosphorylated and
degraded by IkB kinase, and NF-kB is released and transferred to the nucleus and triggers the release of
proinflammatory mediators like TNF-a [27]. TGF-B signaling plays an important role in cell damage;
oxidative stress, liver fibrosis, and enhanced TNF-a, TGF-B, and NF-kB expressions were often reported as
the primary cause for various hepatotoxic drug-induced liver injuries [28]. In this study, INH-induced pro-
inflammatory marker gene expressions such as TNF-a, TGF-3, and NF-kB are responsible for liver
inflammation and fibrosis and this could be the possible cause for the onset of INH-induced liver
inflammation and hepatotoxicity. Corosolic acid from banaba has been shown to ameliorate acute
inflammation via inhibition of interleukin-1 receptor-associated kinase 1 phosphorylation in macrophages
[29]. Ethanolic extract of banaba has been shown to possess an anti-inflammatory effect against
carrageenan-induced acute inflammation and formalin-induced (chronic) paw edema models [30].
Therefore, the presence of triterpenoids such as corosolic acid in EBLE can be attributed to its anti-
inflammatory potential [14].

In the present study, histopathology of the liver also confirms that INH can induce architectural distortion
and fibrotic changes along with degeneration of hepatocytes and inflammation. EBLE post-treatments,
especially at 500 mg/kg, significantly reduce INH-induced degenerative changes and fibrosis in the liver. Our
biochemical results are well-corroborated with pathological and molecular analysis. The probable
hepatoprotective effect of EBLE is presented in Figure 6.
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FIGURE 6: Mechanism of isoniazid (INH)-induced hepatotoxicity and
hepatoprotective effects of ethanolic banaba leaves extract (EBLE) in
rats

AST and ALT: aspartate transaminases and alanine transaminases; ALP: alkaline phosphatase, LDH: lactate
dehydrogenase, GGT-y glutamyl transpeptidase; LPO: lipid peroxidation; SOD: superoxide dismutase; CAT:
catalase; GSH: reduced glutathione; TNF-a: tumor necrosis factor-alpha; TGF-B: transforming growth factor-beta;
NF-kB: nuclear factor kappa B; IkB: inhibitor of NF-kB; N: nucleus

Image credits: Devaraj Ezhilarasan

Limitations

This study reports the hepatoprotective effect of banaba on INH-induced liver injury. INH is also known to
induce liver steatosis, and this study has not focused on the hepatic steatosis aspects. Future studies are
required to investigate the influence of banaba on INH-induced changes in lipid metabolism and
lipotoxicity. Future studies should explore the metabolic interaction of banaba extract-based
phytochemicals with INH metabolites and its possible role in the prevention of hepatotoxicity.

Conclusions

In conclusion, the present study suggests that once daily, 30 days of INH administration induces significant
hepatotoxicity in rats. The injured liver did not recover from INH intoxication even after 30 days left without
any treatment and the toxicity was similar to the INH alone group (Group II), which was sacrificed at the end
of Day 30. At a "high" dose, EBLE post-treatment significantly reduced INH-induced hepatotoxicity, and
hence, EBLE could be further studied to develop as a potential hepatoprotective drug against INH-induced
liver toxicity.
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