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Abstract
Background
Degenerative spinal conditions (DSCs) involve a diverse set of pathologies that significantly impact health
and quality of life, affecting many individuals at least once during their lifetime. Treatment approaches are
varied and complex, reflecting the intricacy of spinal anatomy and kinetics. Diagnosis and management pose
challenges, with the accurate detection of lesions further complicated by age-related degeneration and
surgical implants. Technological advancements, particularly in artificial intelligence (AI) and deep learning,
have demonstrated the potential to enhance detection of spinal lesions. Despite challenges in dataset
creation and integration into clinical settings, further research holds promise for improved patient
outcomes.

Methods
This study aimed to develop a DSC detection and classification model using a Kaggle dataset of 967 spinal X-
ray images at the Department of Neurosurgery of Arrowhead Regional Medical Center, Colton, California,
USA. Our entire workflow, including data preprocessing, training, validation, and testing, was performed by
utilizing an online-cloud based AI platform. The model's performance was evaluated based on its ability to
accurately classify certain DSCs (osteophytes, spinal implants, and foraminal stenosis) and distinguish these
from normal X-rays. Evaluation metrics, including accuracy, precision, recall, and confusion matrix, were
calculated. 

Results
The model achieved an average precision of 0.88, with precision and recall values of 87% and 83.3%,
respectively, indicating its high accuracy in classifying DSCs and distinguishing these from normal cases.
Sensitivity and specificity values were calculated as 94.12% and 96.68%, respectively. The overall accuracy of
the model was calculated to be 89%. 

Conclusion
These findings indicate the utility of deep learning algorithms in enhancing early DSC detection and
screening. Our platform is a cost-effective tool that demonstrates robust performance given a
heterogeneous dataset. However, additional validation studies are required to evaluate the model's
generalizability across different populations and optimize its seamless integration into various types of
clinical practice.
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Keywords: ai and robotics in healthcare, spine injury, artificial intelligence (ai), x ray, degenerative spine disease,
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Introduction
Degenerative spinal conditions (DSCs) encompass a broad spectrum of conditions that affect the structural
elements of the spine that can significantly impact an individual's health and quality of life [1-6]. Globally,
it has been estimated that nearly 30% of adults may suffer from a spinal disorder with even more individuals
at risk of DSCs sometime in their lifetime. [1]. From degenerative conditions, such as disc disease, foraminal
stenosis, and osteophytes, to traumatic events leading to fractures and dislocations, the breadth of DSCs is
expansive and their prevalence significant [5].
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Treatment approaches to these conditions are as varied as their etiologies. Conservative management
strategies, surgical interventions, and novel therapeutic approaches are all part of clinicians’
armamentarium when dealing with these pathologies [2]. Nevertheless, the complexity of spinal anatomy
and the subtle nuances of these conditions can pose challenges in diagnosis and management [4].

The detection and characterization of these DSCs can be challenging due to the complexity of the spine's
anatomy, presence of age-related deterioration, and subtlety of some DSCs in imaging studies [5,7]. This is
particularly true in the presence of surgical implants, which can cause artifacts in images, making it difficult
to identify and assess surrounding tissues [3].

Technological advancements in imaging modalities have certainly provided clinicians with improved
visualization capabilities. Nonetheless, distinguishing pathological DSCs from normal age-related changes
or identifying small or complex DSCs can be a demanding task. Recent studies have highlighted the
potential of artificial intelligence (AI) in enhancing image detection for DSCs [8]. Deep learning algorithms,
a subset of AI, have demonstrated promising results in identifying and classifying spinal pathologies [9-10].
These computational models, trained on vast datasets of spinal images, show potential to augment
diagnostic capabilities, optimize patient management, and ultimately improve patient outcomes [9].
However, further research is needed to fully integrate and validate these technologies within the clinical
setting.

Despite these advancements, challenges remain. Deep learning algorithms require large, accurately labeled
datasets for training, which can be labor-intensive and costly to produce. Furthermore, the application of
these systems in real-world clinical settings poses its own set of challenges, including integrating them into
existing workflows and ensuring that they operate reliably and safely [11]. Privacy concerns challenging the
ethical implications of AI technology have also been raised [12]. Despite these hurdles, the potential of deep
learning in the field of DSC detection is promising, and further research and development is likely to yield
significant benefits for all stakeholders in spinal disease management.

Materials And Methods
This study was conducted at the Department of Neurosurgery of Arrowhead Regional Medical Center,
Colton, California, USA. It aimed to develop a proof-of-concept DSC detection and classification model
using spinal X-ray images obtained from a Kaggle dataset [13]. A dataset comprising over 967 images,
including 311 spinal stenosis, 121 normal, 136 spinal implant, and 399 osteophyte cases, was utilized for
model development. All images used throughout our workflow were in PNG digital format with 300 x 300
pixels in size. These images were heterogeneous in nature, captured in a variety of imaging planes (i.e.,
oblique and transverse) and locations (i.e., cervical, thoracic, and lumbar).

Our initial data preprocessing included separating our DSC images and normal images into respective
folders. Each image was visually inspected and confirmed to ensure accurate quality and subsequent
labeling.

Next, we implemented data processing and augmentation techniques as previously described in the
literature [14]. Our model automatically optimized varying combinations of noise injection, pixelation,
image translation, cropping, resizing, and zooming to better unify the heterogeneous nature of images. This
helps to expand our training dataset, thereby yielding the highest classification accuracy possible.

For model development, Google Collaboration, an online cloud-based AI platform, was employed. The deep
learning algorithm was trained to learn various feature parameters and patterns associated with DSC-
positive spine X-rays, using the labeled spine X-ray dataset (Figure 1).
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FIGURE 1: Sample X-ray image of cervical spinal stenosis

Our model was trained, tested, and deployed on March 23, 2023. Our entire workflow, including the training
time, was 128 minutes. 

Next, the learned feature parameters were used for training. Out of 967 total images, 773 (80%) were used
for training , 97 (10%) were used for validation , and 97 (10%) were used for testing. To maintain internal
validity, all assignments in this study were randomized. No external datasets were used in this study.

To further validate the generalizability of our model performance, we conducted further testing on a
separate set of spine X-ray images distinct from our aforementioned training, validation, and test data.
Model performance was assessed based on its ability to accurately identify and classify DSCs into either
osteophytes, spinal implant, and foraminal stenosis and distinguish them from normal X-rays (Figure 2).
Diagnostic criteria were made by experienced clinicians as indicated by the dataset, but specific details were
not mentioned. Evaluation metrics, including overall accuracy, confusion matrix, precision, and recall, were
calculated to quantify the model performance.
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FIGURE 2: Sample X-ray image of a normal spine

The model was constructed on an Apple MacBook Air (Apple Inc., California, USA). Hardware used included
an Apple M2 processing unit. Software tools used included Google Collaboration (online cloud-based AI
platform), Python programming language, and various combinations of deep learning frameworks, such as
TensorFlow, EfficientNet, ResNet-50, and PyTorch [14].

Results
The model developed using an online cloud-based AI demonstrated robust results. The model achieved an
area-under-the-curve (AUC) value of 0.88, indicating its ability to accurately classify DSC-positive and
normal spine X-ray images. Precision and recall values were found to be 87% and 83.3%, respectively (Figure
3). Sensitivity (true-positive rate) and specificity (true-negative rate) values were calculated as 94.12% and
96.68%, respectively (Table 1). These values were calculated by computing the true positive, true negative,
false positive, and false negative values from the confusion matrix (Figure 4).
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FIGURE 3: Area-under-the-curve (AUC) graph depicting the recall and
precision of the model (confidence interval set to .05)

Metric Value

Accuracy 89%

Precision 87%

Recall 83.30%

Sensitivity 94.12%

Specificity 96.68%

TABLE 1: Model performance metrics
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FIGURE 4: Confusion matrix demonstrating the model performance

The overall accuracy of the model was determined to be 89%. This value represents the percentage of all
cases, both DSC-positive and normal, that were correctly identified and classified by the model. These
results highlight a robust ability to accurately distinguish DSCs from normal X-ray images.

Discussion
DSCs pose a significant global patient burden, necessitating early and accurate diagnosis for prompt
management and treatment [1]. Given the current challenges of identifying and classifying DSCs, more
studies are exploring the incorporation of AI and deep learning to enhance clinical workflows [9,10].

X-rays and computed tomography (CT) are widely used diagnostic modalities for DSCs [5]. In this study, our
objective was to develop a model for DSC detection and classification using spinal X-ray images. Utilizing an
easily accessible public dataset obtained from Kaggle.com, which included over 967 images, we trained a
deep learning algorithm on an online cloud-based AI platform. The model demonstrated high precision,
recall, sensitivity, specificity, and overall accuracy, indicating its effectiveness in classifying DSCs.

The model achieved an average precision of 0.88, with precision and recall values of 87% and 83.3%,
respectively. Sensitivity and specificity values were calculated as 94.12% and 96.68%, respectively. The
overall accuracy of the model was calculated to be 89%. These results highlight the model’s potential for
aiding in the early detection of DSCs. Early diagnosis is crucial for initiating timely treatment and improving
patient outcomes. Accurate DSC classification models developed through machine learning and deep
learning algorithms can assist healthcare professionals in making informed decisions and potentially
allocate more time for higher-level care.

Our study did have some limitations. First, the use of publicly available spinal X-ray images did not include
all the variations of DSC cases. We were also unable to obtain the specific diagnostic criteria, potentially
creating sources of bias. Due to the limited sample size of our dataset, we were unable to delineate our
analysis into cervical, thoracic, or lumbar pathology. We also were unable to determine which spinal
implants were used in our imaging sets. In addition, our initial high recall rate suggests potential overfitting,
in which the algorithm is memorizing data rather than learning patterns from previous training epochs [15].
In order to correct for this, our future efforts will adjust the learning rate per epoch and increase the sample
size to ensure appropriate feature learning. Although our dataset was able to achieve high accuracy with
heterogeneous images from different imaging planes and spinal levels, factors, such as sample size, image
capture parameters, sequence diversity, image misclassification, and choice of deep learning algorithms,
may influence model performance. Our study did not evaluate the potential biases of our model toward
certain patient populations or imaging modalities, which may affect accuracy and generalizability. Finally,
the diagnosis of DSCs is dependent on both radiographic and clinical findings. Although our model aids in
screening and diagnosis radiographically, a keen clinical workup is necessary to establish a proper diagnosis.

Future efforts will aim to recapitulate these findings in a wider variety of DSC pathology. In addition,
analysis of potential model biases can help optimize our model’s performance in real-world clinical
pipelines. Accounting for biases can ensure appropriate generalizability and external validity across diverse
patient populations and health systems. This is best achieved with enhanced validation and deployment of
our model within multiple inter-institutional cohorts of patients to critically assess clinical utility and its
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impact on patient outcomes.

This study demonstrates the potential of machine learning and deep learning algorithms in developing an
accurate DSC screening tool for spinal X-ray images. The model exhibited high precision, recall, sensitivity,
specificity, and overall accuracy, suggesting its utility in distinguishing between different types of DSCs.
Continued research efforts are required to enhance the model's generalizability and facilitate its integration
into clinical practice, ultimately aiding in the early detection and improved management of DSCs.

Conclusions
This study demonstrates the potential of deep learning tools in enhancing the diagnosis of DSCs using
spinal X-ray images. Our model exhibited robust accuracy and performance metrics, effectively classifying
different types of DSCs and distinguishing them from normal cases. The integration of these tools into
clinical workflow can potentially improve early detection, enabling prompt and enhanced management of
DSCs. Multidisciplinary collaboration is paramount to improving future research, validation, and
implementation efforts of similar deep learning tools. This model is a proof of concept of the ongoing
technological advancements in our armamentarium for combating DSCs and minimizing their impact on
global health.
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