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Abstract
Purpose
Intensity-modulated proton therapy (IMPT) treatments are increasing, however, treatment

planning remains complex and prone to variability. RapidPlanTMPT (Varian Medical Systems,
Palo Alto, California, USA) is a pre-clinical, proton-specific, automated knowledge-based
planning solution which could reduce variability and increase efficiency. It uses a library of
previous IMPT treatment plans to generate a model which can predict organ-at-risk (OAR) dose
for new patients, and guide IMPT optimization. This study details and evaluates

RapidPlanTMPT.

Methods
IMPT treatment plans for 50 head-and-neck cancer patients populated the model-library. The
model was then used to create knowledge-based plans (KBPs) for 10 evaluation-patients. Model
quality and accuracy were evaluated using model-provided OAR regression plots and examining
the difference between predicted and achieved KBP mean dose. KBP quality was assessed
through comparison with respective manual IMPT plans on the basis of boost/elective planning
target volume (PTVB/PTVE) homogeneity and OAR sparing. The time to create KBPs was

recorded.

Results
Model quality was good, with an average R2 of 0.85 between dosimetric and geometric features.
The model showed high predictive accuracy with differences of <3 Gy between predicted and
achieved OAR mean doses for 88/109 OARs. On average, KBPs were comparable to manual IMPT
plans with differences of <0.6% in homogeneity. Only 2 of 109 OARs in KBPs had a mean dose
>3 Gy more than the manual plan. On average, dose-volume histogram (DVH) predictions
required 0.7 minutes while KBP optimization and dose calculation required 4.1 minutes (a
‘continue optimization’ phase, if required, took an additional 2.8 minutes, on average).

Conclusions
RapidPlanTMPT demonstrated efficiency and consistency and IMPT KBPs were comparable to
manual plans. Because worse OAR sparing in a KBP was not always associated with geometric-
outlier warnings, manual plan checks remain important. Such an automated planning solution
could also assist in clinical trial quality assurance and overcome the learning curve associated
with IMPT.
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Introduction
The growing interest in proton therapy is substantiated by the recent increase in the number of
treatment centers globally. However, it is well documented that even established photon
techniques like intensity-modulated radiation therapy (IMRT) or volumetric modulated arc
therapy (VMAT) suffer from a wide variation in treatment plan quality between planners and
institutes [1-2]. It is, therefore, reasonable to assume that this will also be a problem for newer,
increasingly complex modalities such as intensity-modulated proton therapy (IMPT). The
complexity of IMPT treatment planning is amplified by, amongst other factors, beam-angle
selection, use of a range shifter/bolus and robust/non-robust optimization. As a result,
determining the achievable organ-at-risk (OAR) sparing for a prospective patient is difficult,
often requiring multiple optimizations. Automated treatment planning, for example using
model/knowledge-based planning, could assist in overcoming such difficulties [3]. One example
of a solution to address the variation observed in photon treatment planning, and to try and

improve planning efficiency, is RapidPlanTM (Varian Medical Systems, Palo Alto, California,
USA), a knowledge-based automated planning approach which has shown promising results in
multiple disease sites [4-7]. In a proof-of-principle study using a version built to accommodate
the physical characteristics of photons, we were previously able to show that

RapidPlanTM could also be used to select patients for proton therapy [8]. We have subsequently
collaborated with Varian Medical Systems in the development and evaluation of a proton-

specific platform, RapidPlanTMPT. In this article, we highlight key features of this planning
tool, including differences with the photon platform, and evaluate, for locally advanced head
and neck cancer (HNC), a model based on a 50-patient IMPT library using 10 validation cases
which were not included in the model.

Materials And Methods
RapidPlanTMPT
RapidPlanTM is a knowledge-based planning solution which uses the geometries and associated
dosimetry contained in a library of previously created treatment plans to construct a model
which can be then used to predict a range of achievable dose-volume histograms (DVHs) for the
OARs of a prospective patient with pre-selected beam directions. Predictions dictate a
placement of optimization objectives to automate the optimization process, resulting in a

knowledge-based plan (KBP). RapidPlanTM for photons has been described previously [4,6].
Model training can be divided into two phases, extraction and training. During extraction, both
the dosimetry and geometry of each library plan are parameterized. In order to evaluate
geometry, OARs are partitioned into the (1) out-of-field region (scattered dose), (2) leaf-
transmission region (not strongly affected by optimization), (3) target overlap region (dose
comparable to that of target) and, finally, (4) in-field region, which is the most heavily
modulated region (Figure 1). Since (1-3) are subject to limited modulation, the average DVH for
such regions is calculated along with the standard deviation. This standard deviation acts as a
lower and upper boundary for the DVH-prediction. Since the in-field region is heavily
modulated, more sophisticated modeling is required. The geometry is evaluated using
geometry-based expected dose (GED). The GED is used to determine how the geometrical
position and distribution of an OAR, relative to the target structures, affects the achievable
dosimetry under the current field geometry [9]. As well as field geometries, the GED takes into
account the physical characteristics and behavior of photons. The geometry of an OAR
therefore comprises GED DVHs and a number of parameters such as OAR volume, OAR-
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planning target volume (PTV) overlap and target volume. RapidPlanTM then parameterizes
both the geometry and achieved DVHs using principal component analysis. Once
parameterized, a regression model can be then used to predict a probable range of DVHs for
each OAR of a prospective patient using their geometry. Finally, dose-volume objectives are
automatically placed near the lower boundary of each OAR DVH prediction range, to guide the

optimization process. The performance of the photon RapidPlanTM platform has been
extensively evaluated for VMAT and IMRT for optimal treatment planning of different disease
sites [5,7,10-11].

FIGURE 1: Volume partitioning in RapidPlanTM for (A) photons
and (B) protons

RapidPlanTMPT, the proton-specific platform, was developed to accommodate the different
physical traits of protons, through adaptation of the GED metric, which for protons is based on
a simplified spread-out Bragg peak (SOBP) model. Contrary to photons, OAR partitioning in

RapidPlanTMPT does not include a leaf-transmission region (Figure 1). Furthermore, the in-
field region is the part of the OAR where the GED is above a certain threshold and with no
target overlap. The out-of-field region is the region where the GED is below a certain threshold.
Similar to photons the GED measures the dose received by each voxel considering target doses
and the field geometry. The GED is evaluated for each field and target level. For each target
level, target voxels receive the prescribed dose while other voxels receive a dose-dependent on
their position along the beamline. Entry dose deposited into a voxel positioned before the
target depends on the target length in the beam direction and the distance from the target.
Distal fall-off determines the dose in voxels positioned after the target, being dependent on the
distance of voxels from the target edge and steepness of the fall-off. A dilation operation
followed by 3D Gaussian convolution is applied to the total GED distribution swelling the GED
distribution and producing a smoother decay (the penumbra). If the beamline intersects the
target multiple times (non-convex target) the disjoint target regions are considered as separate
sub-targets when calculating the GED distribution. This reduces dose in non-target voxels
between the spatially separated target regions.

IMPT treatment planning
Locally advanced HNC IMPT plans were based on a simultaneous integrated boost (SIB)
technique, delivering 70/54.25 Gy to the boost/elective PTV (PTVB/PTVE) in 35 fractions. A 5-

mm transition-region between PTVs was created to facilitate a gradual dose fall-off (PTVO).

Plans typically aimed to spare the oral cavity as well as parotid glands, submandibular glands
and individual swallowing muscles, although certain OARs could sometimes be excluded due to
the extent of their overlap with PTVs. Laterality (ipsilateral/contralateral) of an OAR was
determined by assessing which OAR was more proximal to the PTV and/or had more overlap
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with the PTV. The aim was to deliver 95% of the prescribed dose to 99%/98% of PTVB/PTVE

while limiting the PTV volume receiving >107% of the prescription dose. IMPT plans were
created using the non-linear universal proton optimizer (NUPO, Varian Medical Systems, Palo
Alto, CA, USA) v13.7.14 and proton convolution superposition (PCS, Varian Medical Systems,
Palo Alto, CA, USA) algorithm v13.7.14 with a 2.5 mm dose calculation grid. Spot sigma in the
air at the isocenter was 3.9 mm for 240 MeV proton beams. Spot spacing was 0.425 times the
energy-dependent in-air full width half maximum (FWHM) spot size at the isocenter. Plans
were made with a standard three-field, multi-field optimization (MFO) technique, with gantry
angles at 35°–55°, 180° and 305°–330°. The field target for each field was the union of PTVB,

PTVE and PTVO, termed PTVCOMP. A range shifter of 5.7 cm water equivalent thickness was

used to allow for irradiation of proximal portions of the PTVs. Each field included typical
proximal, distal and lateral target margins of 0.2 cm, 0.3 cm and 0.5 cm, respectively.
Optimization was performed interactively during planning by manually adjusting optimization
objectives to maintain an approximately fixed diagonal distance to DVH-lines displayed in the
optimization window [12]. A subsequent “continue optimization” was used in eight of 10 cases
to improve PTV dose homogeneity/coverage. Maximum point dose-objectives were used for the
spinal cord, brainstem and their planning at risk volumes.

RapidPlanTM model
IMPT treatment plans were created for 50 arbitrarily selected HNC patients and used to
populate the model library. Model quality was evaluated using the regression, residual and

DVH-plots as well as R2 values, which indicate the quality and variance of regression models,
with 1 indicating a perfect fit between geometric and dosimetric features [11]. DVHs or points
in the regression and residual plots which deviated from the bulk of the population were
removed using visual analysis of the aforementioned plots in conjunction with the available
statistical metrics. However, based on previous experience, extensive outlier removal was not
performed [13].

Evaluation group
For an evaluation group of 10 HNC patients (not included in the model), both manual and KBP
IMPT plans were created. KBPs were created using the upcoming release version of NUPO
v15.7.0 and PCS v15.0.17 with a 2.5 mm dose calculation grid. Both the beam arrangements and
priorities of optimization objectives for KBPs were the same as in the respective manual plans.
Furthermore, a “continue optimization” was performed if PTVs did not meet the
aforementioned planning aims. Finally, KBPs were normalized to the same mean PTVB dose as

the respective manual plans.

Study endpoints
Model quality was evaluated as described above. The accuracy of RapidPlanTMPT predictions
was determined by examining the difference between predicted and achieved mean dose for
each KBP [14]. The KBPs were benchmarked against their respective manual plans on the basis
of (1) the homogeneity index (HI) of PTVB/PTVE (HIB/HIE), where (HIB/HIE) = 100x(Dose to 2%

of the volume(D2%)-D98%)/D50% and PTVB/PTVE V95, (2) mean dose to individual OARs and

combined salivary and swallowing structures (compsal and compswal, respectively). The time

required to create KBPs was also reported.

Results
Model quality, based upon the provided metrics, was good. R2 values for OARs were 0.76-0.93,
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with at least 43 structures matched to their respective OAR model structure (Table 1). Figure 2
shows the regression plots of 10 OARs. Visually, good correlation was seen between both the
geometric and dosimetric features of regression plots. Additionally, for 9 OAR regression
models the “Geometric distribution principal component score 1” alone (or in combination with
another geometric feature) explained most of the variation in the dosimetry - as seen on the
horizontal axes of the regression plots. The accuracy of model generated DVH-predictions is
illustrated in Figures 3 and 4. Achieved OAR mean dose showed good agreement with predicted
mean dose in all KBPs with differences of <3 Gy for 88 of 109 OARs. Of the remaining 21 OARs,
six were flagged as geometric outliers. Figure 4 shows that the largest differences between
predicted and achieved mean dose occurred predominantly in swallowing OARs. KBP DVHs
typically lay within the predictions, which is shown in Figure 5 for three evaluation cases where
patients 5 and 7 were arbitrarily selected while patient 2 was selected as it contained the largest
difference in predicted-achieved mean dose. This difference occurred in the medial pharyngeal
constrictor muscle (PCM), for which the predicted mean dose was 7 Gy lower than the achieved

mean dose. This medial PCM had a volume of only 1 cm3 compared with the average volume in

the model of 3.5 cm3.

Model    Evaluation Group

Organ-at-risk R2 # Volume (cm3) Volume (cm3)

C. Parotid 0.77 46 27.6 ± 8.9 (12.3 - 46) 32.2 ± 10.6 (21.2 - 52.4)

I. Parotid 0.78 47 28 ± 8.2 (11.6 - 47.1) 30.7 ± 10.8 (18.9 - 55.5)

C. Sub. 0.9 43 9.3 ± 2.6 (4.1 - 14.9) 9.6 ± 2.4 (5.9 - 13.6)

Oral Cavity 0.76 50 152.8 ± 84.9 (21.1 - 362.3) 103.7 ± 19.4 (57.7 - 128.8)

Cricoph 0.91 50 3.1 ± 1.4 (0.7 - 7.8) 3.4 ± 1.5 (1.3 - 5.8)

Lower Larynx 0.93 49 6.3 ± 5.5 (1.5 - 27.3) 6 ± 3.5 (1.4 - 12.2)

Upper Larynx 0.89 48 11.6 ± 5.5 (4.4 - 30.3) 10.6 ± 8 (2.9 - 29.8)

Inferior PCM 0.92 49 4.2 ± 1.8 (1.4 - 9.7) 3.1 ± 1.4 (0.7 - 5.9)

Medial PCM 0.85 49 3.5 ± 2.6 (0.8 - 12.9) 2.5± 1.2 (0.8 - 4.5)

Superior PCM 0.86 49 7.3 ± 3.5 (0.8 - 17.4) 5.6 ± 0.7 (4.7 - 7)

Upper esophageal sphincter 0.8 47 1.6 ± 0.9 (0.7 - 5.9) 3.1 ± 2.5 (0.7 - 7.8)

TABLE 1: R2 values, numbers (#) and volumes of organs-at-risk in the model and the
volume of organs-at-risk in the 10-patient evaluation group
C. Parotid: Contralateral parotid; I. Parotid: Ipsilateral parotid; C. Sub: Contralateral submandibular; PCM: Pharyngeal constrictor
muscle
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FIGURE 2: Regression plots for the parotid glands, oral cavity
and swallowing structures
The regression lines (dashed) and confidence intervals (dotted-line), one standard deviation, are
shown for each.
DVH: Dose-volume histogram
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FIGURE 3: Achieved versus predicted mean dose for all 10
evaluation patient knowledge-based plans

FIGURE 4: Achieved minus predicted mean dose for the OARs
of all 10 evaluation KBPs
C. Parotid: Contralateral parotid; I. Parotid: Ipsilateral parotid; C. Submandibular: Contralateral
submandibular; KBP: Knowledge-based plan; OAR: Organ-at-risk; PCM: Pharyngeal constrictor
muscle; UES: Upper esophageal sphincter
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FIGURE 5: Prediction ranges (grey dashed lines) and DVHs
(black lines) for the KBPs of three evaluation patients
C. Parotid: Contralateral parotid; I. Parotid: Ipsilateral parotid; C. Submandibular: Contralateral
submandibular; DVH: Dose-volume histogram; KBP: Knowledge-based plan; PCM: Pharyngeal
constrictor muscle; UES: Upper esophageal sphincter

DVH predictions required 0.7 minutes while optimization and dose calculation of KBPs required
4.1 minutes, on average (n=5). A “continue optimization” (used to improve PTV
dose/homogeneity [12] in 8 of 10 cases) and dose calculation could take another 2.8 minutes
(the time necessary to build the model-library is not included in these figures). KBPs were
generally of comparable quality to manually created plans. Averaged over all evaluation
patients, HIB and HIE differed by <0.6% between manual and KBPs. Only 2 of 109 OARs had a

>3 Gy increase in mean dose in the KBPs compared to manual plans: the first was a 4.2 Gy
increase to the contralateral submandibular gland of patient 1 (the predicted mean dose was 3.5
Gy higher than the KBP achieved mean dose, it was not flagged as a geometric outlier). At the
same time, KBP HIE improved by 1.7% and compswal/oral cavity mean dose decreased by 0.9

Gy/1.2 Gy over that of the manual plan; the second concerned a 4.4 Gy higher mean dose to the
lower larynx of patient 10 (this was flagged as geometric outlier on the basis of its small
volume).

Figure 6 shows the mean dose to OARs for individual patients. There was a statistically
significant reduction in the oral cavity and superior PCM mean dose when using KBPs over
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manual plans, 1.2 Gy and 2.1 Gy on average, respectively. Maximum dose to the shoulders,
spinal cord and brainstem differed by <3 Gy, on average, between manual plans and KBPs.

FIGURE 6: OAR mean doses for the 10 evaluation patients
using manual plans (grey) and KBPs (black)
KBP: Knowledge-based plan; OAR: Organ-at-risk; PCM: Pharyngeal constrictor muscle; UES:
Upper esophageal sphincter
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Discussion
This article described the key features of a prototype proton-specific automated IMPT planning
solution and reported the results of an evaluation for HNC. The model/knowledge-based
solution showed a relatively high degree of accuracy in predicting the achieved mean OAR dose
and plan quality was comparable to that of manually made IMPT plans with, generally,
minimal differences in PTV homogeneity and OAR sparing. In addition, the automated plans
required, on average, approximately 4-7 minutes for creation (7 minutes includes a “continue
previous optimization” function). Similar to the photon solution, this automated IMPT
planning solution has numerous potential advantages, including (i) improving planning
efficiency, (ii) reducing planning variation [4], (iii) utilization in the quality assurance of proton
plans and clinical trial plans [14-15] and (iv) the possibility of sharing planning expertise
between proton centers [16]. Knowledge sharing might help to overcome the IMPT learning
curve and allow centers to benchmark their own plans [17-18]. This IMPT prototype solution
also enables physicians to rapidly, and accurately, estimate the magnitude of possible
improvements with proton therapy, over photons, for individual patients [8].

The fact that the geometric principal component score 1 appeared in the majority of regression
plots (Figure 1), which showed a high degree of correlation with DVH principal component
score 1, suggests that the GED alterations by incorporating the physical characteristics of
protons to evaluate the dose to an OAR based on its distance to the target, is functioning well.
Although there were a number of deviations between predicted and achieved mean dose for
KBPs, these deviations were not always accompanied by a geometric outlier warning (Figure 4),
emphasizing that the resulting plans still require additional quality checks. These checks
should include target dose homogeneity, which, in certain cases, required improvement
through the use of a ‘continue previous optimization’ step.

This study has a number of limitations. All HNC patients, both evaluation cases and those in
the model library, had a standardized field set up. Since many proton centers may use differing
beam arrangements, to determine the versatility of this planning solution, future work should
investigate how the standardized plans compare to alternative beam arrangements and
whether implementation of automated beam-angle selection is feasible. Furthermore, in this
study, we used the PTVCOMP as the field-target for all fields whereas a proton center may split

the target into parts and utilize different field-targets per field direction depending on the PTV
geometry/location. Additionally, all IMPT plans in this study were non-robustly optimized.

While preliminary results on the use of RapidPlanTMPT in creating robustly optimized IMPT
plans for external proton centers are promising [19], a dedicated investigation should be
considered in future to accommodate the increasing interest in robust optimization. Finally, in
this investigation, we report on the physical dose. Further development of proton treatment
planning applications may enable the potential variation in the relative biological effectiveness
(RBE) along the SOBP, especially towards the distal edge, to be accounted for. Recent work
suggests that the conventionally used RBE of 1.1 appears valid for the mid-SOBP region but
higher values more distally could be clinically relevant [20].

Automated IMPT planning is in its infancy, however, Hall et al. constructed a geometric
knowledge-based model to predict patient-specific improvements using protons, over other
modalities, for clival chordoma patients. Their model was based upon the correlation between
dose and the distance-to-target, and used to predict feasible OAR DVHs for new patients [21].
Hennings et al. developed a tool to automatically pre-calculate feasible planning solutions for
uveal melanomas [22]. Meanwhile, Bijman et al. investigated uncertainties in model-based
patient selection for IMRT or IMPT, using automatically planned IMPT plans. Their approach to
automation differed to that seen in this study, in that it incorporated a pre-defined wish-list of
hard constraints and hierarchical OAR objectives (tackled in order of priority) [23].
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Conclusions
This investigation details a pre-clinical knowledge-based IMPT planning solution. This solution
demonstrated efficiency and consistency while creating IMPT KBPs which were comparable to
manually created treatment plans. Since inferior OAR sparing in a KBP was not always
combined with geometric-outlier warnings, manual checking of plans remains important. Such
an automated treatment planning solution has several potential applications, including
assistance in clinical trial quality assurance and diminishing the learning curve associated with
IMPT treatment planning.
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