Review began 05/28/2023 Review ended 06/16/2023 Published 06/19/2023

© Copyright 2023

Yarrarapu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Epidemiology, Trends, Utilization Disparities, and Outcomes of Catheter Ablation and Its Association With Coronary Vasospasm Amongst Patients With Non-valvular Atrial Fibrillation: A Nationwide Burden of Last Decade

Siva Naga S. Yarrarapu 1 , Parth Shah 2 , Beshoy Iskander 3 , Andrea Mestre 4 , Aditya Desai 5 , Shiv Shah 6 , Renu Bhandari 7 , Abdul-Rahaman Adedolapo Ottun 8 , 9 , Anmol Bharti 10 , Deepika Vunnam 11 , Abdelhakim Ouled Said 12 , Ya-Ching Hsieh 13 , Urvish K. Patel 14 , Vikramaditya Samala Venkata 15

1. Internal Medicine, Monmouth Medical Center/Rutgers University, Long Branch, USA 2. Hospital Medicine, Tower Health Medical Group, Reading, USA 3. Internal Medicine, Bon Secours Mercy Health - St. Elizabeth Youngstown Hospital (NEOMED), Youngstown, USA 4. Internal Medicine, Universidad del Rosario, Bogota, COL 5. Internal Medicine, University of California Riverside School of Medicine, Riverside, USA 6. Internal Medicine, Government Medical College, Surat, Surat, IND 7. Medicine, Manipal College of Medical Sciences, Pokhara, NPL 8. Internal Medicine, Presbyterian Hospital, Agogo, GHA 9. Internal Medicine, University of Ghana, Accra, GHA 10. Internal Medicine, University College of Medical Sciences, Delhi, IND 11. Internal Medicine, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences and Research Foundation, Chinna Avutapalli, IND 12. Internal Medicine, Hospital Ibn Sina, Rabat, MAR 13. Anesthesiology, Icahn School of Medicine at Mount Sinai, New York, USA 14. Public Health and Neurology, Icahn School of Medicine at Mount Sinai, New York, USA 15. Internal Medicine, Cheshire Medical Center/Dartmouth-Hitchcock Keene, Keene, USA

Corresponding author: Ya-Ching Hsieh, hsiehsusie@gmail.com

Abstract

Background: Catheter ablation (CA) is an important curative treatment for non-valvular atrial fibrillation (NVAF), however, nationwide data on its utilization and disparities is limited. Coronary vasospasm is a rare, life-threatening, peri-operative complication of CA with limited literature in Caucasians.

Methods: We performed a retrospective study on adult hospitalizations in the USA from 2007 to 2017 by obtaining the data from National Inpatient Sample. The primary endpoints of our study were to identify the utilization rate of CA, disparities in utilization, and study the outcomes associated with CA. The secondary endpoints of the study were to identify the incidence of coronary vasospasm amongst patients who underwent CA, evaluate their association, and identify the predictors of coronary vasospasm.

Results: From 35,906,946 patients with NVAF, 343641 (0.96%) underwent CA. Its utilization decreased from 1% in 2007 to 0.71% in 2017. Patients who underwent CA, compared to those without CA, fared better in terms of hospital length of stay, mortality rate, disability rate, and discharge to the non-home facility. Patients in the 50-75 years age group, Native Americans, those with private insurance, and median household income of 76-100th percentile were associated with higher odds of CA utilization. Urban teaching hospitals and large-bedded hospitals performed more ablations, while the Mid-West region fared lower than the South, the West, and the Northeast. The prevalence of coronary vasospasm was higher amongst CA in comparison without CA, however, in regression analysis, no significant association was demonstrated between CA and coronary vasospasm.

Conclusion: CA is an important treatment modality that is associated with improved clinical outcomes. Identification of factors associated with lower utilization of CA and its disparities will help to mitigate the burden associated with NVAF.

Categories: Cardiology, Internal Medicine

 $\textbf{Keywords:} \ outcomes, \ disparities, \ utilization, \ coronary \ vasos pasm, \ atrial \ fibrillation, \ catheter \ ablation$

Introduction

Atrial fibrillation (AF), the most common supraventricular tachyarrhythmia [1], poses a significant economic burden together with serious cardiovascular morbidity and mortality. It is associated with advanced age. With the average life expectancy of the global population increasing, its prevalence is only bound to escalate [2,3]. More than 12 million people in the US are estimated to have AF by the year 2030. Its age-adjusted mortality rate increased significantly from 18 to 22.3 per 100,000 population over the past decade, with more than 150,000 deaths per year and \$6.65 billion spent on health care annually [2,4-7]. Diabetes, hypertension, smoking, obesity, and dyslipidemia are some of the other important risk factors for AF. Recently, coronary artery disease has been shown to play an important role in the pathogenesis and incidence of AF with new

evidence demonstrating an interdependent relationship between the two [8-10].

Catheter ablation (CA), first described in 1981, has undergone several technological advancements over the past decades and has proven to be an important curative treatment for paroxysmal, persistent, and permanent AF. Its fundamental principle involves mapping the site of abnormal cardiac impulse generation and its focal ablation by using either cryotherapy or radiofrequency. Not only is it indicated for patients who develop intolerance or fail pharmacotherapy, it is now being considered as a first-line, early treatment strategy in a select group of asymptomatic patients [11-15]. Thus, determining the utilization rate over the past decade and the outcomes of CA was one of our study objectives.

Previous evidence has found racial differences in CA utilization, pointing to unnoticed factors that may be contributing to bias involving the management of AF patients [16]. Patient comorbidities, hospital characteristics and location, and socioeconomic disparities could be some of the factors involved. Additionally, large-scale studies are limited. Therefore, we aimed to evaluate the epidemiology, and utilization disparity of CA.

Although minimally invasive, this procedure is not without complications. The safety of CA hasn't been well established with regard to the patient's age and underlying comorbidities. Cardiac tamponade, atrioesophageal fistula formation, and pulmonary vein stenosis are some of the commonly reported complications [17-22]. Coronary vasospasm, although infrequent, is a life-threatening phenomenon that has been gaining more attention over the past few years [23]. It is a high-risk complication that can cause myocardial ischemia and can present in the form of angina, cardiogenic shock, ventricular fibrillation, and cardiac arrest. The published literature on its incidence, predictors, and outcomes in relation to CA is limited. Although observational studies were previously conducted in the Japanese population [24,25], racial differences between the Japanese and Caucasian populations in association with vasospastic angina make these findings difficult to interpret [26]. With an increasing proportion of AF patients undergoing early procedures, herein, we aim to identify the odds of vasospasm in association with the procedure in the US population and study its predictors and outcomes.

This study finds importance in helping us identify the factors associated with the utilization, healthcare disparities, and outcomes of CA, and secondarily, helps us better understand the complication of coronary vasospasm, which would promote better management of the patients undergoing CA.

Materials And Methods

Details of data

Data was obtained from the Agency for Healthcare Research and Quality's Healthcare Cost and Utilization Project (HCUP) Nationwide Inpatient Sample (NIS) files between January 2007 and December 2017. The NIS is the largest publicly available all-payer inpatient care database in the United States and contains discharge-level data provided by states that participate in the HCUP (including a total of 46 in 2011). This administrative dataset contains data on approximately eight million hospitalizations in 1,000 hospitals that were chosen to approximate a 20% stratified sample of all US community hospitals, representing more than 95% of the national population. Criteria used for stratified sampling of hospitals into the NIS include hospital ownership, patient volume, teaching status, urban or rural location, and geographic region. Discharge weights are provided for each patient discharge record, which allows extrapolation to obtain national estimates. Each hospitalization is treated as an individual entry in the database and is coded with one principal diagnosis, up to 24 secondary diagnoses, and 15 procedural diagnoses associated with that stay. Detailed information on NIS is available at http://www.hcup-us.ahrq.gov/db/nation/nis/nisdde.jsp.

Study population, type, and demographic characteristics of the population

We performed a retrospective observational study on adult hospitalizations in the USA from 2007 to 2017. Primary and secondary diagnoses of AF were identified using the International Classification of Diseases (ICD-9) and 10-CM codes. AF was defined by 427.31, I48.0X (paroxysmal AF), I48.1X (persistent AF), and I48.2X (chronic AF). We have obtained patient characteristics of interest (age, sex, race, insurance status, admission day, admission type, median household income category, and concomitant diagnoses), hospital characteristics (hospital size, hospital region, and teaching versus nonteaching hospital), and concurrent conditions/comorbidities. Hospital region is based on the classification system given by the US Census Bureau on "region" which divides the US into West, Midwest, South, and Northeast. Hospital size is based on the number of beds and divided the hospitals into small (fewer than 100 beds), medium (100 to 499 beds), and large (500 or more beds).

We identify comorbidities of hypertension, diabetes mellitus, obesity, dyslipidemia, abuse/dependence on drugs, alcohol and tobacco, renal failure, HIV/AIDS, solid tumor, depression, ischemic heart disease, AF, and congestive heart failure (CHF) using ICD 9 and 10 codes. Age <18 years and admissions with missing data for age, sex, and race were excluded.

The comparison was made between AF undergoing CA and without CA. CA was defined by ICD-9 and 10 procedure codes as a primary procedure (ICD-9-CM Procedure 37.34 and ICD-10 procedure codes 02583ZZ, 02563ZZ, 02573ZZ, 025K3ZZ, 025L3ZZ, 02B63ZZ, 02B73ZZ, 02BK3ZZ, 02BL3ZZ).

Endpoints

The primary endpoints of our study were to identify the utilization rate of CA, disparities in utilization, and study the outcomes associated with CA. The secondary endpoints of the study were to identify the incidence of coronary vasospasm amongst patients who underwent CA, evaluate their association, and identify the predictors of coronary vasospasm.

Coronary vasospasm was defined as ICD-9 and 10 (413.1 and I20.1) as new events during hospitalization. We have included complications like post-procedural bleeding (life-threatening and minor), cardiac complications, respiratory, and infections. Outcomes were defined as all-cause in-hospital mortality, hospital stay, cost, discharge disposition, and disability. Discharge disposition was divided into two groups (home vs non-home discharge) and disability was calculated based on All Patient Refined DRGs (APR-DRGs)_severity of disease, developed by 3M Health Information Systems (0-4: No, Minor, Moderate, Major, and Extreme loss of function).

Statistical analysis

All statistical analyses were performed using the weighted survey methods in Statistical Analysis Software (SAS) (version 9.4, SAS Institute, North Carolina State University, USA). Univariate and bivariate analysis of differences between categorical variables were tested using the chi-square test and analysis of differences between continuous variables were tested using unpaired student's t-test. The mixed-effects survey logistic regression models with weighted analysis were used for the dependent variables, to estimate the odds ratio (OR) and 95% confidence intervals to identify the association between coronary vasospasm and CA as well as predictors and outcomes of coronary vasospasm. p-values of <0.05 were considered significant and all statistical tests used were two-sided. No predetermined sample size was calculated or considered. For each model, the C-index (a measure of goodness of fit for the logistic regression model) was calculated.

Details of Confounders/Variables

We have adjusted regression analysis with demographics of patients (age, sex, race), patient characteristics (admission day, primary payer, admission type, and median household income category), comorbidities (hypertension, diabetes mellitus, obesity, dyslipidemia, abuse/dependence of drug, alcohol and tobacco, renal failure, HIV/AIDS, solid tumor, depression, ischemic heart disease, AF, and CHF), and hospital characteristics (hospital region, teaching versus nonteaching hospital, hospital bed size).

Results

Disease hospitalizations

The total unweighted hospitalizations for AF was 10,565,495 hospitalizations and the total weighted was 52,278,160 hospitalizations from 2007 to 2017. After excluding patients <18 years of age and patients with missing demographic data such as age, gender, and race, the total number of AF patients was 35,906,946 hospitalizations. CA procedure was performed in 343,641 (0.96%) patients.

Prevalence trends

The trend for CA for AF hospitalizations was analyzed. This trend is shown in Figure $\it 1$ where it was decreasing from 1% in 2007 to 0.71% in 2017, Ptrend<0.0001.

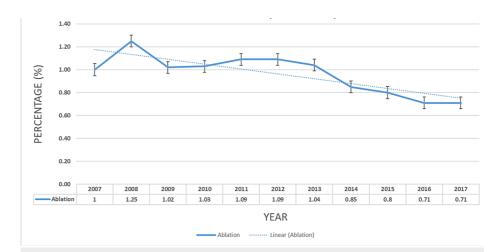


FIGURE 1: Prevalence trend of catheter ablation in US hospitalizations from 2002 to 2017 (Ptrend <0.0001)

Demographics, patient comorbidities, and hospital characteristics

Of 35,906,946 patients with non-valvular atrial fibrillation (NVAF), 343641 (0.96%) underwent CA. Patients who underwent CA were mostly in the age group of 50-75 years (63.67%) vs <50 years (8.63%) vs >75 years (27.71%). The majority of patients undergoing CA were men (61.6%) and was more common amongst White race (86.17%) vs Native American (0.58%) vs Black (7.31%). Patients with a median household income falling in the 76th-100th percentile (28%) were the majority to have the procedure. Most of the patients had Medicare insurance (59.5%) vs Medicaid (4.06%) vs private insurance (32.71%). CA was performed more often during weekdays (89.54%) vs weekends (10.46%) and frequently done as a non-elective procedure (51.41%) vs elective (48.59%). It was more frequent in urban teaching hospitals (73.14%) vs urban nonteaching (24.1%) and was more common in the South region (39.57%) vs the West region (19.33%). Comorbidity comparison between the cohorts with vs without CA include hypertension (67.4% vs 75.52%), diabetes (24.53% vs 33.8%), CHF (33.4% vs 42.45%), alcohol use (2.12% vs 3.17%), tobacco use (7.38% vs 7.72%), and drug abuse (1.02% vs 1.37%). p-value was noted to be <0.0001 for the above comparisons (Table 1).

Variables	Catheter Ablation N=343,641 (0.96%)	No-Catheter Ablations N=35,563,304 (99.04%)	Total N= 35,906,946 (100%)	p-value
Demographic and Socioeconomic	c Characteristics (%)			
Age Groups				
Age Group 18-50 years	29,639 (8.63)	1,098,655 (3.09)	1,128,295 (3.14)	<0.000
Age Group 50-75 years	218,781 (63.67)	13,380,000 (37.63)	13,600,000 (37.87)	<0.000
Age Group >75 years	95,219 (27.71)	21,080,000 (59.29)	21,180,000 (58.98)	<0.000
Sex				
Male	211,667 (61.6)	17,890,000 (50.3)	18,100,000 (50.41)	<0.000
Female	131,970 (38.4)	17,670,000 (49.7)	17,810,000 (49.59)	<0.000
Race				
White	289,183 (86.17)	29,270,000 (84.03)	29,560,000 (84.05)	<0.000
Black	24,535 (7.31)	2,941,361 (8.44)	2,965,897 (8.43)	<0.000
Hispanic	15,417 (4.59)	1,833,665 (5.26)	1,849,082 (5.26)	<0.000
Asian or Pacific Islander	4,533 (1.35)	643,373 (1.85)	647,907 (1.84)	<0.000
Native American	1,937 (0.58)	143,517 (0.41)	145,454 (0.41)	<0.000
Median household income for patient's ZIP Code				

0-25th percentile	74,740 (22.2)	9,124,548 (26.13)	9,199,289 (26.09)	<0.000
26th to 50th percentile (median)	81,482 (24.2)	9,046,942 (25.91)	9,128,425 (25.89)	<0.000
51st to 75th percentile	86,202 (25.6)	8,589,608 (24.6)	8,675,810 (24.61)	<0.000
76th to 100th percentile	94,258 (28)	8,157,289 (23.36)	8,251,548 (23.41)	<0.000
Patient level characteristics (%)				
Primary Payer (%)				
Medicare	204,261 (59.5)	28,570,000 (80.44)	28,770,000 (80.23)	<0.000
Medicaid	13,952 (4.06)	1,396,179 (3.93)	1,410,132 (3.93)	<0.000
Private Insurance	112,290 (32.71)	4,483,255 (12.62)	4,595,546 (12.81)	<0.000
Other/Self-pay/No charge	12,774 (3.72)	1,069,819 (3.01)	1,082,593 (3.02)	<0.000
Admission type (%)				
Non-elective	175,944 (51.41)	30,250,000 (85.3)	30,430,000 (84.97)	<0.000
Elective	166,300 (48.59)	5,214,433 (14.7)	5,380,732 (15.03)	<0.000
Admission day (%)				
Weekday	307,698 (89.54)	27,900,000 (78.46)	28,210,000 (78.57)	<0.000
Weekend	35,942 (10.46)	7,659,189 (21.54)	7,695,132 (21.43)	<0.000
Concurrent comorbidities (%)				
Hypertension (%)	231,625 (67.4)	26,860,000 (75.52)	27,090,000 (75.44)	<0.000
Diabetes mellitus (%)	84,307 (24.53)	12,020,000 (33.8)	12,110,000 (33.71)	<0.000
Metabolic Syndrome (%)	686 (0.2)	68,822 (0.19)	69,508 (0.19)	<0.413
Dyslipidemia (%)	930 (0.27)	84,864 (0.24)	85,794 (0.24)	<0.000
Abuse/dependence of drug (%)	3,490 (1.02)	485,725 (1.37)	489,215 (1.36)	<0.000
Abuse/dependence of alcohol (%)	7,294 (2.12)	1,126,088 (3.17)	1,133,383 (3.16)	<0.000
Abuse/dependence of tobacco (smoking) (%)	25,349 (7.38)	2,745,887 (7.72)	2,771,236 (7.72)	<0.000
Congestive heart failure (%)	114,840 (33.42)	15,100,000 (42.45)	15,210,000 (42.36)	<0.000
TIA (%)	888 (0.26)	382,950 (1.08)	383,839 (1.07)	<0.000
AIS (%)	517 (0.15)	1,021,605 (2.87)	1,022,122 (2.85)	<0.000
Hospital level characteristics (%)				
Bed Size of hospital (%)*				
Small	24,319 (7.13)	5,502,324 (15.52)	5,526,643 (15.44)	<0.000
Medium	68,905 (20.2)	9,603,313 (27.09)	9,672,218 (27.03)	<0.000
Large	247,914 (72.67)	20,340,000 (57.38)	20,590,000 (57.53)	<0.000
Hospital Location & Teaching Status (%)				
Rural	9,417 (2.76)	3,999,458 (11.28)	4,008,876 (11.2)	<0.000
Urban Non-teaching	82,199 (24.1)	13,580,000 (38.31)	13,660,000 (38.17)	<0.000
Urban Teaching	249,522 (73.14)	17,870,000 (50.41)	18,120,000 (50.62)	<0.000
Hospital Region (%)				
Northeast	85,247 (24.81)	8,188,389 (23.02)	8,273,636 (23.04)	<0.000

Midwest	55,982 (16.29)	7,346,860 (20.66)	7,402,843 (20.62)	<0.0001
South	135,973 (39.57)	13,690,000 (38.49)	13,820,000 (38.5)	<0.0001
West	66,438 (19.33)	6,340,184 (17.83)	6,406,623 (17.84)	<0.0001

TABLE 1: Characteristics of patients undergoing catheter ablation amongst US hospitalizations (2007-2017)

TIA: transient ischaemic attack; AIS: acute ischemic stroke

Outcomes of CA in AF hospitalizations

Table 2 shows the outcomes of AF patients who had undergone CA. Outcomes were discharge, mortality, disability/loss of function, cost, and length of stay (LOS).

Outcomes	Catheter Ablation N=343,641 (0.96%)	No-Catheter Ablations N=35,563,304 (99.04%)	Total N= 35,906,946 (100%)	p-value
Discharge to non-home (%)	17.99	54.01	53.65	<0.0001
In hospital all cause mortality (%)	0.76	5	4.96	<0.0001
Severe and extreme disability (%) @	32.49	57.04	56.8	<0.0001
Length of stay (days)	4.6	6.0		<0.0001
Cost of hospitalization (\$)	111,711	53,930		<0.0001

TABLE 2: Univariate analysis of the outcomes in catheter ablation and no-catheter ablation

@Disability: APR-DRG severity was defined by

APR-DRG: All Patients Refined-Diagnosis Related Groups

Patients who underwent CA compared to those without CA fared better in terms of mean length of hospital stay (4.64 days vs 6.02 days, p<.0001), the mortality rate (0.76% vs 5%, p<0.0001), disability rate (32.49% vs 57.04%, p<0.0001), discharged to the non-home facility (17.99% vs 54.01%, p<0.0001), however, mean cost of hospitalization was higher in CA patients (\$111,711 vs \$53,930, p<0.0001).

Outcomes of CA in AF hospitalizations - multivariable regression analysis model

Table 3 lists the multivariable regression analysis models for death, discharge, disability, morbidity, and risk of death. After adjusting for various variables such as age, sex, race, etc., the models showed that patients who had undergone CA had lower odds of death (adjusted OR 0.196, 95% CI 0.179-0.214, p<.0001), discharge to non-home (adjusted OR 0.268, 95% CI 0.263-0.274, p<.0001), severe and extreme disability (adjusted OR 0.418, 95% CI 0.411-0.425, p<.0001), morbidity (adjusted OR 0.473, 95% CI 0.456-0.492, p<.0001), and risk of death (adjusted OR 0.578, 95% CI 0.568-0.588, p<.0001), with AUC or C statistic of 0.633, 0.69, 0.682, 0.615, and 0.676, respectively.

Effect	Odds Ratio (OR)	95% Confidence Limits		P Value	Area under the ROC Curve/c-index
Ellect	Odds Ralio (OR)	Lower Limit	Upper Limit	P value	Area under the ROC Curve/c-index
Model 1: Death	0.196	0.179	0.214	< .0001	0.633
Model 2: Morbidity*	0.473	0.456	0.492	< .0001	0.615
Model 3: Discharge to non-Home	0.268	0.263	0.274	< .0001	0.690
Model 4: Disability @	0.418	0.411	0.425	< .0001	0.682
Model 5: Risk of death #	0.578	0.568	0.588	< .0001	0.676

TABLE 3: Outcomes of catheter ablation in atrial fibrillation hospitalizations - multivariable regression analysis model

* Morbidity is defined by - hospital stay >90th Percentile of mean hospitalization + discharge to non-home (home health care, skilled nursing facility, assisted living facility)

@Disability: APR-DRG severity was defined by

Risk of death: APR-DRG risk of mortality was defined by

APR-DRG: All Patients Refined-Diagnosis Related Groups

Utilization of CA and its disparities

Table 4 shows the multivariable analysis of predictors of utilization among inpatients with AF.

	Odds Ratio (OR)	95% Confiden	ce Limits	P value
		Lower Limit	Upper Limit	
Age				
18-50 years	Reference			
50-75 years	1.592	1.525	1.662	<0.0001
>75 years	1.159	1.089	1.662	<0.0001
Race				
White	Reference			
African American	0.695	0.674	0.718	<0.0001
Hispanic	0.788	0.759	0.819	<0.0001
Asian or Pacific Islander	0.609	0.568	0.652	<0.0001
Native American	1.39	1.245	1.552	<0.0001
Sex				
Female	Reference			
Male	0.883	0.869	0.898	<0.0001
Median Household income by Zipcode				
0-25th percentile	Reference			
26th-50th percentile	1.073	1.048	1.098	<0.0001
51-75th percentile	1.077	1.052	1.103	<0.0001

76-100th percentile	1.154	1.126	1.182	<0.0001
Primary Payer				
Medicare	Reference			
Medicaid	0.687	0.658	0.718	<0.0001
Private insurance	1.307	1.282	1.333	<0.0001
Other/self-pay/no charge	0.854	0.817	0.892	<0.0001
Admission Type				
Elective	Reference			
Non-elective	3.958	3.894	4.024	<0.0001
Admission Day				
Weekday	Reference			
Weekend	0.683	0.665	0.701	<0.0001
Bed Size of Hospital				
Small	Reference			
Medium	1.632	1.578	1.688	<0.0001
Large	2.681	2.6	2.763	<0.0001
Hospital Location and Teaching Status				
Rural	Reference			
Urban non-teaching	2.451	2.336	2.571	<0.0001
Urban teaching	5.092	4.861	5.334	<0.0001
Hospital Region				
Northeast	Reference			
Midwest	0.717	0.698	0.735	<0.0001
South	1.01	0.989	1.032	0.3428
West	1.059	1.034	1.085	<0.0001
Comorbidities of Patients				
Smoking	0.723	0.701	0.745	<0.0001
Drug	0.571	0.527	0.618	<0.0001
Alcohol	0.514	0.486	0.542	<0.0001
TIA	0.392	0.336	0.456	<0.0001
AIS	0.087	0.071	0.106	<0.0001
CHF	1.069	1.051	1.087	<0.0001
HTN	0.869	0.854	0.884	<0.0001
Diabetes	0.661	0.648	0.673	<0.0001
HIGH TG	0.905	0.78	1.051	0.1905
Area under the ROC curve/c-index	0.804			

TABLE 4: Regression analysis showing predictors of utilization of catheter ablation

TIA: transient ischaemic attack; AIS: acute ischemic stroke; CHF: congestive heart failure; HTN: hypertension; TG: triglyceride

Patients in 50-75 years age group (OR 1.59, 95% CI 1.52-1.66, p<0.0001), Native Americans (1.39, 1.24-1.55, p<0.0001), those with private insurance (1.30, 1.28-1.33, P<0.0001), and with a median household income of 76-100th percentile (1.15, 1.12-1.18, P<0.0001) were associated with higher odds of CA utilization. Its use was lower in males (0.88, 0.86-0.89, p<0.0001) than in females. CA was performed more on weekdays compared to weekends (0.68, 0.66-0.70, P<0.0001) and as a nonelective procedure (3.95, 3.89-4.02, P<0.0001). While urban teaching hospitals (5.09, CI: 4.86-5.33, P<0.0001) and large-bedded hospitals (2.68, 2.60-2.76, P<0.001) performed more ablations, the Mid-West region (OR 0.71, 95% CI: 0.69-0.73, P<0.001) fared lower than the South, the West, and the North-East. Patients with CHF had seen higher odds of utilization (1.06, 1.05-1.08, P<0.0001), whereas HTN (0.86, 0.85-0.88, P<0.0001), smoking (0.72, 0.70-0.74, P<0.0001), diabetes mellitus (0.66, 0.64-0.67, P<0.0001), drug usage (0.57, 0.52-0.61, P<0.0001), alcohol consumption (0.51, 0.48-0.54, P<0.0001), TIA (0.39, 0.336-0.45, P<0.0001), and AIS (0.08, 0.07-0.10, P<0.0001) were associated with lower odds.

The AUC or C statistic was 0.804.

Predictors of vasospasm in AF hospitalizations

Table 5 lists a multivariable analysis of the predictors of vasospasm in AF hospitalizations.

	044 5 " (05)	95% Confidence	95% Confidence Limits	
	Odds Ratio (aOR)	Lower Limit	Upper Limit	P Value
Procedure				
No catheter ablation	Reference			
Catheter ablation	1.294	0.826	2.027	0.2599
AGE (every 10 years)	0.957	0.953	0.961	<0.0001
Race				
White	Reference			
African American	1.008	0.831	1.222	0.9377
Hispanic	0.982	0.758	1.272	0.8916
Asian or Pacific Islander	1.217	0.825	1.796	0.3212
Native American	0.909	0.371	2.224	0.8342
Sex				
Female	Reference			
Male	2.043	1.807	2.309	<0.0001
Median Household Income By Zip Code				
0-25th percentile	Reference			
26th-50th percentile	1.249	1.057	1.476	0.0089
51-75th percentile	1.225	1.027	1.46	0.0242
76-100th percentile	1.229	1.021	1.479	0.0294
Primary Payer				
Medicare	Reference			
Medicaid	1.02	0.805	1.293	0.8687
Private insurance	1.107	0.936	1.309	0.2345
Other/self-pay/no charge	0.912	0.676	1.23	0.5448
Admission Type				
Elective	Reference			

Non-elective	0.835	0.702	0.994	0.042
Admission Day				
Weekday	Reference			
Weekend	1.152	1.003	1.323	0.0447
Bed Size of Hospital				
Small	Reference			
Medium	1.239	1.014	1.516	0.0366
Large	1.278	1.063	1.538	0.0091
Hospital Location and Teaching Status				
Rural	Reference			
Urban non-teaching	0.876	0.698	1.098	0.2503
Urban teaching	1.115	0.9	1.381	0.3179
Hospital Region				
Northeast	Reference			
Mldwest	1.242	1.031	1.497	0.0228
South	1.082	0.911	1.284	0.3686
West	1.309	1.08	1.587	0.0061
Comorbidities of Patients				
smoking	1.034	0.861	1.242	0.7198
Drug	3.363	2.685	4.212	<0.0001
Alcohol	0.884	0.672	1.164	0.3797
TIA	1.113	0.642	1.929	0.704
AIS	0.31	0.165	0.58	0.0002
CHF	0.565	0.493	0.648	<0.0001
HTN	1.254	1.088	1.446	0.0018
Diabetes	0.678	0.59	0.779	<0.0001
HighTG	1.868	0.885	3.942	0.1011
Area under the ROC curve/c-index			0.504	

TABLE 5: Regression analysis showing predictors of coronary spasm following catheter ablation

TIA: transient ischaemic attack; AIS: acute ischemic stroke; CHF: congestive heart failure; HTN: hypertension; TG: triglyceride

The prevalence of coronary vasospasm was higher amongst CA in comparison to those without CA (0.03% vs 0.02%; p<0.0001). In regression analysis, we found a non-significant association between CA and coronary vasospasm (aOR 1.29, 95% CI 0.83-2.03; p=0.2599). Predictors associated with coronary vasospasm were male (2.04, 1.80-2.31, p<0.0001), non-elective procedure (0.84, 0.70-0.99, p=0.042), weekend procedure (1.15, 1.003-1.323, p=0.0447), substance abuse (3.36, 2.68-4.21, p<0.0001), and hypertension (1.25, 1.09-1.45, p-0.0018). Other comorbidities that appeared to be protective include diabetes (0.68, 0.59-0.78, p<0.0001), CHF (0.565, 0.49-0.65, p<0.0001), and acute ischemic stroke (0.31, 0.17-0.58, p=0.0002).

 $The AUC \ or \ C \ statistic \ was \ used \ to \ validate \ the \ accuracy \ of \ the \ regressions, \ which \ in \ this \ model \ is \ 0.504.$

Discussion

 $CA is an effective \ management \ strategy \ for \ AF \ patients \ who \ fail/develop \ intolerance \ to \ medical \ treatment,$

with the European Society of Cardiology (ESC) guidelines 2020 denoting it as a second-line therapy [27]. But in 2012, the first randomized clinical trial to document the superiority of early treatment with radiofrequency CA over anti-arrhythmic drugs was executed in 294 patients with paroxysmal AF [28]. A significant decrease in AF burden was documented at 24 months post-procedure in the ablation group. The findings were even reciprocated with cryoablation for the initial management of paroxysmal AF. This was documented in a randomized controlled trial of 303 patients where the ablation group had a lower incidence of recurrent/persistent atrial arrhythmias compared to the antiarrhythmic group over a three-year follow-up [29]. The advantage of early cryoablation over medical therapy was likewise demonstrated by Wazni et al., with a lower recurrence of atrial arrhythmias [30]. The recently published "EAST AFNET4" (Early Treatment of Atrial Fibrillation for Stroke Prevention Trial) trial discussed the potential advantages of initiating the early rhythm-control strategy (which included management with CA) in patients with AF when compared to standard care [31]. It demonstrated a lower frequency of adverse cardiovascular events in the rhythm-control group. Another recently discovered advantage of CA might be a lower incidence of dementia as reported in certain studies [32,33]. Thus, there is scope for CA to be considered as first-line therapy for AF in future guidelines if the results can be matched in large studies with good generalizability.

In our study, the outcomes of CA such as odds of death, discharge to non-home, severe disability, morbidity, and risk of death were found to have statistically improved outcomes compared to no ablation group. This explains the decrease in the burden of AF after CA [34].

Demographic data of our study suggest that the majority of the population undergoing CA were younger (50-75 years), males, and belonging to the Native American race. Recent studies have shown that Native Americans may have the highest incidence of AF. Of late, a large longitudinal analysis conducted in California, demonstrated this association when the annual incidence of AF was the highest in Native Americans, among all the races, despite controlling for sociodemographic and co-morbidities [35]. A previous study also demonstrated similar findings, where the Native American race had the highest prevalence of AF [36]. It is yet to be determined if there is a genetic predisposition or acquired exposure to risk factors that might have increased their incidence.

As with any planned procedure, the majority of CA was performed on weekdays and as a non-elective procedure. Socioeconomic status was a key factor in determining the likelihood of a patient undergoing CA. Patients with a median household income of 76-100th percentile, and private insurance had the highest odds of utilization. This was likewise demonstrated in previous studies that reported higher socioeconomic status as a key factor for undergoing the procedure [37].

The overall trend for CA utilization in US hospitalizations was found to be decreasing from 2007 to 2017. Rojulpote et al. studied the trends of CA utilization in the US between 2004 and 2014 among different income classes. It was found that the trend has been decreasing among patients with a low-income status but increasing in patients with higher incomes [38].

While urban teaching hospitals and large bedded hospitals performed more ablations, the Southern region had the most ablations compared to the West, Mid-West, and North-East. The Mid-West had the lowest odds of utilization compared to the remainder of the US. The Southern region was shown to have the greatest prevalence of cardiovascular risk factors as well as cardiovascular mortality in prior studies, which could potentially reflect the number of ablations in the South in our study. South-eastern US was also found to have the maximum healthcare utilization. Sinner et al. investigated the utilization of CA between 2007 and 2009 and correlated the regional prevalence of AF to healthcare spending. He found varied regions distributed throughout the US with the highest utilization of CA [39,40].

Patients with CHF had seen higher odds of utilization. About 42% of the patients with AF have coexistent CHF [41]. CA in this population was demonstrated previously to markedly improve mortality compared to medical therapy in a multicenter randomized controlled trial [42]. The observed benefit in improving mortality was also noticed in patients with heart failure with reduced ejection fraction (HFrEF) [43]. Whereas hypertension, smoking, diabetes mellitus, drug usage, alcohol consumption, TIA, and AIS were associated with lower odds of utilization. This could potentially be related to a lower success rate or a high risk of atrial arrhythmia recurrence in patients with severe comorbidities. D'Angelo et al. described how healthier patients had a higher likelihood of undergoing the procedure on account of similar reasons [37].

Coronary vasospasm is a rare but life-threatening complication of CA that can sometimes culminate in sudden cardiac arrest (SCA) [24,44,45]. Its proposed pathophysiology of CA is multifactorial yet not well-defined. It includes transmural inflammation of the myocardium or changes in the autonomic activity of ganglionated plexus in epicardial adipose tissue via thermal injury, or vasospasm induced by medications [40]. By far, there have only been a handful of documented cases and a couple of observational studies about coronary vasospasm materializing as a rare peri-operative complication of the procedure [24-26]. The literature also highlights late-onset coronary vasospasm documented in association with the procedure [45]. However, it is unknown whether the procedure increases the incidence of vasospasm as a long-term effect in the presence of other risk factors. Also, none of the above-mentioned observational studies were conducted in the Caucasian population. We used real-world data in our study to analyze the association between in-

hospital AF treated with CA and coronary artery vasospasm. Our study is the first of its kind in this regard that tried to investigate this association by working on a retrospective cohort analysis. The odds of coronary vasospasm were found to be 29% higher in the CA cohort versus no ablation, albeit, having a statistically non-significant association. The underlying reason could be related to the low prevalence of coronary vasospasm cases in the CA cohort, thus having very limited power in demonstrating the association or detecting the difference between the two cohorts. A Japanese Cohort analyzed periprocedural coronary vasospasm in patients undergoing CA for AF, however, they were not able to demonstrate an association [26]. Another multicenter trial by Nakamura et al. was also unable to comment on the association [25]. These two studies involved 22,232 and 2,913 patients respectively that found coronary vasospasm to have <1% (0.19% and 0.31% respectively) incidence of CA; however, it was carried out in the Japanese population [25,26]. Given the significance of racial disparity in vasomotor reactivity of coronary arteries, our study helps provide a better comprehension of the relation between vasospasm and CA in the US population.

Substance abuse was found to elevate the risk of vasospasm by more than 300% in our study. This is in concordance with the published studies that documented tobacco smoking, alcohol, amphetamines, and cocaine as causes of vasospasm [46]. Hypertension was noted to be a predictor (25% higher odds), quite the contrary to reported literature on this association. Chen et al. concluded a paradoxical relation between hypertension and vasospasm [47]. In a retrospective study on the Taiwanese population, hypertension was shown to have an inverse effect on vasospasm, especially in females with high C-reactive protein (CRP) levels [48]. Apart from them, diabetes and CHF appeared to be protective in our study. While diabetes mellitus is a major contributing factor to coronary atherosclerosis, it had previously been proven to not elevate the risk of vasospasm. This was established in a prospective study on diabetes patients with intracoronary acetylcholine provocation test in the Korean population [49]. Likewise, CHF has never been documented to have an associated risk with vasospasm. Additional investigations evaluating the link between hypertension and CHF on vasospasm in the CA sub-group, with long-term follow-up of patients, especially in the Caucasian population, are warranted.

Strengths and limitations

To the best of our knowledge, this is the largest retrospective study that looked at the epidemiology, utilization rates and disparities, and predictors of utilization of CA especially for NVAF. NIS is the largest inpatient database and so the study is highly representative of the USA. This study had a large sample size because of the large database and we can conclude that there is good statistical power. Ours is the first study to analyze the association between coronary vasospasm and CA in the US population. There was fair representation in terms of age group, race, sex, and socioeconomic status. The above characteristics could potentially make our study validated externally to the real-world population.

Like every study with strengths, there were some limitations in this study. Data from administrative databases was obtained via discharged codes, billing codes, etc., and hence they are susceptible to coding errors. Furthermore, because the study is retrospective, causality could not be established between vasospasm and the predictors. Finally, because this was an inpatient population-based study, there might be a risk of underreporting as not all NVAF patients are admitted and some are managed as out-patient cases.

Conclusions

CA is an important treatment modality of NVAF that has been associated with improved outcomes in our study. Together with the recent investigations in the literature, our study reinforces the potential possibility of its utilization as a first-line therapeutic strategy for NVAF. Identification of factors associated with lower utilization of CA and its disparities will help to mitigate the burden associated with NVAF.

Additional Information

Disclosures

Human subjects: Consent was obtained or waived by all participants in this study. Animal subjects: All authors have confirmed that this study did not involve animal subjects or tissue. Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

References

- 1. Wyndham CRC: Atrial fibrillation: the most common arrhythmia. Tex Heart Inst J. 2000, 27:257-67.
- Benjamin EJ: Independent risk factors for atrial fibrillation in a population-based cohort: the Framingham Heart Study. JAMA. 1994, 271:840. 10.1001/jama.1994.03510350050036
- Chugh SS, Blackshear JL, Shen W-K, Hammill SC, Gersh BJ: Epidemiology and natural history of atrial fibrillation: clinical implications. J Am Coll Cardiol. 2001, 37:371-8. 10.1016/s0735-1097(00)01107-4

- Miyasaka Y, Barnes ME, Gersh BJ, et al.: Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence. Circulation. 2006, 114:119-25. 10.1161/CIRCULATIONAHA.105.595140
- Colilla S, Crow A, Petkun W, Singer DE, Simon T, Liu X: Estimates of current and future incidence and prevalence of atrial fibrillation in the U.S. adult population. Am J Cardiol. 2013, 112:1142-7.
 10.1016/j.amicard.2013.05.063
- Underlying Cause of Death, 1999-2020 Request. Accessed: May 24, 2023: https://wonder.cdc.gov/ucd-icd10 html
- Tanaka Y, Shah NS, Passman R, Greenland P, Lloyd-Jones DM, Khan SS: Trends in cardiovascular mortality related to atrial fibrillation in the United States, 2011 to 2018. J Am Heart Assoc. 2021, 10:e020163. 10.1161/JAHA.120.020163
- Batta A, Hatwal J, Batta A, Verma S, Sharma YP: Atrial fibrillation and coronary artery disease: an integrative review focusing on therapeutic implications of this relationship. World J Cardiol. 2023, 15:229-43. 10.4330/wjc.v15.i5.229
- Liang F, Wang Y: Coronary heart disease and atrial fibrillation: a vicious cycle. Am J Physiol Heart Circ Physiol. 2021, 320:H1-H12. 10.1152/ajpheart.00702.2020
- Yan T, Zhu S, Xie C, Zhu M, Weng F, Wang C, Guo C: Coronary artery disease and atrial fibrillation: a bidirectional Mendelian randomization study. J Cardiovasc Dev Dis. 2022, 9:69. 10.3390/jcdd9030069
- Coyne KS, Paramore C, Grandy S, Mercader M, Reynolds M, Zimetbaum P: Assessing the direct costs of treating nonvalvular atrial fibrillation in the United States. Value Health. 2006, 9:348-56. 10.1111/j.1524-4733.2006.00124.x
- Scheinman MA, Rutherford JD: The development of cardiac arrhythmia ablation: a conversation with Melvin A. Scheinman, MD. Circulation. 2017, 135:1191-3. 10.1161/CIRCULATIONAHA.117.027956
- Parameswaran R, Al-Kaisey AM, Kalman JM: Catheter ablation for atrial fibrillation: current indications and evolving technologies. Nat Rev Cardiol. 2021, 18:210-25. 10.1038/s41569-020-00451-x
- 14. Lesh MD, Van Hare GF, Epstein LM, et al.: Radiofrequency catheter ablation of atrial arrhythmias. Results and mechanisms. Circulation. 1994, 89:1074-89. 10.1161/01.cir.89.3.1074
- Chugh A: Catheter ablation as first-line therapy for patients with symptomatic atrial fibrillation. Expert Rev Cardiovasc Ther. 2007, 5:663-72. 10.1586/14779072.5.4.663
- Andrade JG, Khairy P, Dubuc M: Catheter cryoablation: biology and clinical uses. Circ Arrhythm Electrophysiol. 2013, 6:218-27. 10.1161/CIRCEP.112.973651
- Tamariz L, Rodriguez A, Palacio A, Li H, Myerburg R: Racial disparities in the use of catheter ablation for atrial fibrillation and flutter. Clin Cardiol. 2014, 37:733-7. 10.1002/clc.22330
- Bertaglia E, Zoppo F, Tondo C, et al.: Early complications of pulmonary vein catheter ablation for atrial fibrillation: a multicenter prospective registry on procedural safety. Heart Rhythm. 2007, 4:1265-71. 10.1016/j.hrthm.2007.06.016
- Cappato R, Calkins H, Chen SA, et al.: Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circ Arrhythm Electrophysiol. 2010, 3:32-8.
 10.1161/CIRCEP.109.859116
- Dagres N, Hindricks G, Kottkamp H, et al.: Complications of atrial fibrillation ablation in a high-volume center in 1,000 procedures: still cause for concern?. J Cardiovasc Electrophysiol. 2009, 20:1014-19. 10.1111/j.1540-8167.2009.01493.x
- Shah RU, Freeman JV, Shilane D, Wang PJ, Go AS, Hlatky MA: Procedural complications, rehospitalizations, and repeat procedures after catheter ablation for atrial fibrillation. J Am Coll Cardiol. 2012, 59:143-9.
 10.1016/j.jacc.2011.08.068
- Spragg DD, Dalal D, Cheema A, et al.: Complications of catheter ablation for atrial fibrillation: incidence and predictors. J Cardiovasc Electrophysiol. 2008, 19:627-31. 10.1111/j.1540-8167.2008.01181.x
- Cappato R, Calkins H, Chen SA, et al.: Worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circulation. 2005, 111:1100-5. 10.1161/01.CIR.0000157153.30978.67
- Guragai N, Rampal U, Vasudev R, et al.: Coronary vasospasm complicating atrial fibrillation ablation: a case report and review of the literature. J Community Hosp Intern Med Perspect. 2020, 10:346-9. 10.1080/20009666.2020.1774252
- Nakamura T, Takami M, Fukuzawa K, et al.: Incidence and characteristics of coronary artery spasms related to atrial fibrillation ablation procedures - large-scale multicenter analysis. Circ J. 2021, 85:264-71. 10.1253/circj.CJ-20-1096
- Hachisuka M, Fujimoto Y, Oka E, et al.: Perioperative coronary artery spasms in patients undergoing catheter ablation of atrial fibrillation. J Interv Card Electrophysiol. 2022, 64:77-83. 10.1007/s10840-021-01089-6
- Hindricks G, Potpara T, Dagres N, et al.: 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Russ I Cardiol. 2021, 26:4701. 10.15829/1560-4071-2021-4701
- Cosedis Nielsen J, Johannessen A, Raatikainen P, et al.: Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation. N Engl J Med. 2012, 367:1587-95. 10.1056/NEJMoa1113566
- Andrade JG, Wells GA, Deyell MW, et al.: Cryoablation or drug therapy for initial treatment of atrial fibrillation. N Engl J Med. 2021, 384:305-15. 10.1056/NEJMoa2029980
- Wazni OM, Dandamudi G, Sood N, et al.: Cryoballoon ablation as initial therapy for atrial fibrillation. N Engl J Med. 2021, 384:316-24. 10.1056/NEJMoa2029554
- Rillig A, Magnussen C, Ozga AK, et al.: Early rhythm control therapy in patients with atrial fibrillation and heart failure. Circulation. 2021, 144:845-58. 10.1161/CIRCULATIONAHA.121.056323
- 32. Li GY, Chen YY, Lin YJ, et al.: Ablation of atrial fibrillation and dementia risk reduction during long-term follow-up: a nationwide population-based study. Europace. 2023, 25:euad109. 10.1093/europace/euad109
- Kim D, Yang PS, Sung JH, et al.: Less dementia after catheter ablation for atrial fibrillation: a nationwide cohort study. Eur Heart J. 2020, 41:4483-93. 10.1093/eurheartj/ehaa726
- 34. Terricabras M, Mantovan R, Jiang CY, et al.: Association between quality of life and procedural outcome

- after catheter ablation for atrial fibrillation: a secondary analysis of a randomized clinical trial. JAMA Netw Open. 2020, 3:e2025473. 10.1001/jamanetworkopen.2020.25473
- Sanchez JM, Jolly SE, Dewland TA, Tseng ZH, Nah G, Vittinghoff E, Marcus GM: Incident atrial fibrillation among American Indians in California. Circulation. 2019, 140:1605-6.
 10.1161/CIRCULATIONAHA.119.042882
- Borzecki AM, Keith Bridgers D, Liebschutz JM, Kader B, Lewis E. Kazis S, Berlowitz DR: Racial differences in the prevalence of atrial fibrillation among males. J Natl Med Assoc. 2008, 100:237-46. 10.1016/s0027-9684(15)31212-8
- D'Angelo RN, Khanna R, Yeh RW, et al.: Trends and predictors of early ablation for atrial fibrillation in a nationwide population under age 65: a retrospective observational study. BMC Cardiovasc Disord. 2020, 20:161. 10.1186/s12872-020-01446-9
- Rojulpote C, Patil S, Gonuguntla K, et al.: Socioeconomic status and trends in utilization of catheter ablation in patients hospitalized with atrial fibrillation in united states. Eur Heart J. 2021, 42:ehab724.0539. 10.1093/eurhearti/ehab724.0539
- Sinner MF, Piccini JP, Greiner MA, et al.: Geographic variation in the use of catheter ablation for atrial fibrillation among Medicare beneficiaries. Am Heart J. 2015, 169:775-82.e2. 10.1016/j.ahi.2015.03.006
- 40. Parcha V, Kalra R, Suri SS, Malla G, Wang TJ, Arora G, Arora P: Geographic variation in cardiovascular health among American adults. Mayo Clin Proc. 2021, 96:1770-81. 10.1016/j.mayocp.2020.12.034
- Maisel WH, Stevenson LW: Atrial fibrillation in heart failure: epidemiology, pathophysiology, and rationale for therapy. Am J Cardiol. 2003, 91:2-8. 10.1016/S0002-9149(02)03373-8
- 42. Marrouche NF, Brachmann J, Andresen D, et al.: Catheter ablation for atrial fibrillation with heart failure . N Engl J Med. 2018, 378:417-27. 10.1056/NEJMoa1707855
- 43. Munir MB, Zia Khan M, Agrawal P, et al.: Catheter ablation for hospitalized atrial fibrillation patients with reduced systolic function: analysis of inpatient mortality, resource utilization and complications. J Atr Fibrillation. 2021, 13:2480. 10.4022/jafib.2480
- Igarashi Y, Tamura Y, Suzuki K, et al.: Coronary artery spasm is a major cause of sudden cardiac arrest in survivors without underlying heart disease. Coron Artery Dis. 1993, 4:177-85. 10.1097/00019501-199302000-00008
- Tsushima T, Osman MN, Josephson RA, Thal SG: First case report: Late-onset coronary artery spasm after radiofrequency catheter ablation for atrial fibrillation in a Caucasian patient. Clin Case Rep. 2020, 8:1786-90. 10.1002/ccr3.2977
- El Menyar AA: Drug-induced myocardial infarction secondary to coronary artery spasm in teenagers and young adults. | Postgrad Med. 2006, 52:51-6.
- Chen KY, Rha SW, Li YJ, et al.: Impact of hypertension on coronary artery spasm as assessed with intracoronary acetylcholine provocation test. J Hum Hypertens. 2010, 24:77-85. 10.1038/jhh.2009.40
- Hung MY, Hsu KH, Hung MJ, Cheng CW, Cherng WJ: Interactions among gender, age, hypertension and C-reactive protein in coronary vasospasm. Eur J Clin Invest. 2010, 40:1094-103. 10.1111/j.1365-2362.2010.02360.x
- Li YJ, Hyun MH, Rha SW, et al.: Diabetes mellitus is not a risk factor for coronary artery spasm as assessed by an intracoronary acetylcholine provocation test: angiographic and clinical characteristics of 986 patients. J Invasive Cardiol. 2014, 26:234-9.