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Abstract
Prediction of the hematoma expansion (HE) of spontaneous basal ganglia hematoma (SBH) from the first
non-contrast CT can result in better management, which has the potential of improving outcomes. This
study has been designed to compare the performance of “Radiomics analysis,” “radiology signs,” and
“clinical-laboratory data” for this task. We retrospectively reviewed the electronic medical records for
clinical, demographic, and laboratory data in patients with SBH. CT images were reviewed for the presence
of radiologic signs, including black-hole, blend, swirl, satellite, and island signs. Radiomic features from the
SBH on the first brain CT were extracted, and the most predictive features were selected. Different machine
learning models were developed based on clinical, laboratory, and radiology signs and selected Radiomic
features to predict hematoma expansion (HE). The dataset used for this analysis included 116 patients with
SBH. Among different models and different thresholds to define hematoma expansion (10%, 20%, 25%, 33%,
40%, and 50% volume enlargement thresholds), the Random Forest based on 10 selected Radiomic features
achieved the best performance (for 25% hematoma enlargement) with an area under the curve (AUC) of 0.9
on the training dataset and 0.89 on the test dataset. The models based on clinical-laboratory and radiology
signs had low performance (AUCs about 0.5-0.6).
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Introduction
Intracerebral hemorrhage (ICH) is responsible for about 10% to 20% of all strokes and is associated with
higher morbidity and mortality than ischemic strokes [1,2]. ICH yearly occurs in 25 cases per 100,000
population, and the incidence, mortality, and morbidity are higher among Asians compared to the West.
About 40% of patients with ICH die within the first month, and only 12%-39% of survivors will achieve long-
term functional independence [1,2]. Spontaneous intracerebral hemorrhage (sICH) is described as a non-
traumatic hemorrhage without underlying lesions such as a tumor or a vascular abnormality [3].
Spontaneous basal ganglia hemorrhage (sBGH), the most common form of sICH, is associated with high
mortality risk, resulting in death or disability in more than 70% of the cases [4]. Multiple factors such as
advanced age, poor initial clinical neurological state, a large hematoma, intraventricular spread, and midline
shift are independent predictors of poor prognosis [5]. Many authors define cerebral hematoma expansion
(HE) as an increased hemorrhage volume of more than 33% or an absolute increase of more than 6 mL on
follow-up CT within 24 hours [6]. However, other thresholds have been used by different authors, including a
50% increase in volume [7] and absolute volume enlargement of more than 20 mL [7] or 12.5 mL [8]. HE
occurs in about one-third of sBGH patients and is associated with higher mortality [9].

The pathological process of HE is not fully understood. “Avalanche model” hypothesized that the pressure
effect of growing initial bleeds compressed the surrounding parenchyma and consecutively resulted in the
rupture of multiple peripheral vessels, which ultimately caused hematoma growth and expansion [10].
Continuous rupturing and hemorrhaging of small vessels are the other possible underlying etiology for HE,
which can explain the HE in patients with elevated systolic blood pressure [11,12]. Nevertheless, given that
the majority of cases with ICH do not have HE, determining patients at risk of expansion is crucial for
patient management. Predicting the chance of HE in each patient may improve the patient outcome through
early intraventricular shunt placement and recently evolving minimally invasive techniques for evacuating
hematoma [13].

So far, different clinical and laboratory features described to be associated with HE include male gender, age
older than 85 years old, elevated systolic blood pressure, variation of the systolic blood pressure during
admission, anticoagulant and antiplatelet therapy, National Institutes of Health Stroke Scale (NIHSS), and
intracerebral hemorrhage (ICH) score, elevated temperature, baseline weight, history of alcohol abuse, and
history of cerebral infarction [1]. Spot sign on the arterial phase of CT angiogram (CTA) has a moderate
performance (area under the curve (AUC) of 0.74 [14]), while the leakage sign has a sensitivity of 93% and
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specificity of 90% [15,16]) in HE prediction. However, CTA has limited usage in emergency departments as
the first imaging modality [1]. On the first non-contrast CT, “black-hole sign” has moderate performance for
this task [14]. On a meta-analysis, the black-hole sign had sensitivity, specificity, and AUC of 30%, 93%, and
0.83, respectively [17]. The “blend sign” sensitivity is between 13% and 42.8%, and its specificity is between
88.5% and 95.5% [18]. The “swirls sign” has a pooled sensitivity and specificity of 50% and 77%, respectively
[19]. “Satellite sign” has a sensitivity of 50% and specificity of 71% [20]. Finally, the “island sign” has been
suggested as the HE indicator with a sensitivity of 32% and specificity of 92% [21]. Prior authors have
shown nine variables (alcohol history, Glasgow Coma Scale score, total serum calcium, blood glucose,
international normalized ratio, hematoma shape, hematoma density, volume of hematoma on first
computed tomography scan, and presence of intraventricular hemorrhage) as independent predictors of
hematoma expansion [22]. Some other factors like hypertension, shorter time to computed tomography
(CT), and use of anticoagulation therapy (warfarin) have been identified as independent clinical predictors
of HE [23].

With the rapid evolution of artificial intelligence and machine learning, Radiomics techniques have a strong
momentum in radiology research. In Radiomics, the region of interest or lesion is first segmented; then,
multiple features are extracted from the region of interest. Subsequently, the most predictive features are
selected, and machine learning models are trained on these features to predict a clinical target [24].
Radiomics was first developed for oncology; however, its application is not limited to neoplasms [25].

This study was conducted to develop a machine-learning model to predict the expansion of the spontaneous
basal ganglia hematoma from the initial brain CT obtained at the time of admission. We use clinical data,
including demographics, medical history, physical examination (ICH score, NIHHS score), laboratory tests,
radiology signs, and Radiomics features. We compare the performance of “clinical” versus “radiology signs”
versus “Radiomics” features in this task. Also, we compare different thresholds to define the HE to find the
most suitable threshold for machine learning. This article was previously posted to the medRxiv preprint
server on April 27, 2020.

Materials And Methods
This is a retrospective study utilizing clinical, imaging data, and Radiomics to predict expansion in sBGH.
Our local university ethical committee approved this retrospective study (IRB-300002728). We reviewed the
medical reports from February 2004 to December 2019 and included patients older than 18 years with sBGH
on the brain CT at the time of admission and a follow-up brain CT within 24 hours of admission. CT scans
were obtained on four Phillips and two Siemens scanners with brain protocols (KV: 120-140, mA: 235-300,
slice thickness: 1-5 mm). The patients’ demographic features (age, gender), medical history (history of ICH,
ischemic stroke, treatment by antiplatelet, treatment by anti-coagulation, history of hypertension), physical
exam information (systolic and diastolic blood pressure, ICH, Glasgow Coma Scale (GCS), and NIHSS
scores), and laboratory data (international normalized ratio (INR), blood glucose level) were recorded.
Patients with missing data were excluded.

The first brain CT at the time of admission was evaluated simultaneously by three neuroradiologists (MT, VP,
and HS, four years, 20 years, and 14 years of experience after residency, respectively). The hematomas were
scored for the presence of black-hole, blend, swirl, satellite, and island signs by the voting system. Any
discrepancies were resolved by discussion. The definition of the radiologist-based signs is summarized in
Table 1 and Figures 1A-1E.
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Sign Definition

Black-
hole
sign
(Figure
1A)

A hypoattenuating area within the hyperdense hematoma. There should be more than 28 Hounsfield Unit differences between
the two regions, and the relatively hypodense area must be encapsulated by the hyperdense region [14].

Blend
sign
(Figure
1B)

(1) A blending of the relatively hypoattenuating area with the adjacent hyperdense region within a hematoma; (2) a well-defined
margin between the hypodense area and adjacent hyperdense region that is easily identified by the bare eye; (3) the hematoma
should have at least an 18 Hounsfield unit difference between the two density regions; and (4) the relatively hypoattenuating
area should not be encircled by the hyperdense region [18].

Swirl
sign
(Figure
1C)

Unclotted fresh blood has a lower density than the clotted blood surrounding it. A low-density region inside hematoma.

Satellite
sign
(Figure
1D)

A small (maximal transverse diameter <10 mm) hemorrhage totally separate from the main hemorrhage in at least a single slice.
The shortest distance between the satellite and the main hemorrhage should be 1-20 mm.  

Island
sign
(Figures
1E, 1F)

(1) ≥3 scattered small-size hematomas all disconnected from the central hematoma or (2) ≥4 small hematomas, some or all of
which may connect with the main hematoma. The separated small islands could be round or oval and are detached from the
mother hematoma. The small hematomas that connect with the central hematoma (connected islands) could be bubble-like or
sprout-like but not lobulated [6].

TABLE 1: Definition of radiology signs.
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FIGURE 1: Radiology signs used in this study.
A: Black-hole sign (arrow). B: Blend sign (arrow). C: Swirl sign. D: Satellite sign (arrow). E and F: Island sign in
one patient (arrows).

The sBGHs were manually segmented by a radiologist (AR 10 years of experience) by 3D slicer software,
which allows users to delineate hemorrhages in three dimensions. Segmentations were confirmed by the
second radiologist (HS). The radiologists were blind to the HE. The volume of hematoma on the baseline and
the second CT was calculated based on the 3D segmentation of the hematomas. The difference between the
volume on the second and the first CT was considered as HE in percent of enlargement. The Radiomics
features of the hematoma on the baseline CT were extracted by the Pyradiomics library.

Different machine learning models (Logistic Regression (LR), Random Forest (RF), Neural Network (NN),
Naive Bayes (NB), Support Vector Machine (SVM), k-Nearest Neighbor (KNN), AdaBoost, Gradient Boosting
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Classifier (GBC), Light Gradient Boosting Machine (LGBM), and Decision Trees (DT)) were developed based
on “clinical data” (demographics, laboratory, and physical exam), “Radiology signs,” and Radiomic features.
Different targets were tested for the definition of HE (10%, 20%, 25%, 33%, 40%, and 50% volume
enlargement).

To develop the machine learning models, the Radiomic features were first normalized, and the most
predictive features were selected by the Least Absolute Shrinkage and Selection Operator (LASSO). For each
model, the 10 most predictive features were used (10% of the number of patients in this study). In the last
stage, machine learning models were developed on all features (clinical+ radiology signs+Radiomic features)
after feature selection (Figure 2).

FIGURE 2: Flowchart of the methodology used in this study.
sBGH: spontaneous basal ganglia hemorrhage, HE: hematoma expansion.

The performance of each model to predict the HE was reported by the area under the curve (AUC) and
accuracy using the 10-fold cross-validation technique. The machine learning was performed utilizing the
Orange data mining toolbox in Python [26]. The platform was implemented to run Radiomics analyses on the
segmented hemorrhages. All statistical analyses were performed using SPSS version 22 (Chicago, IL: SPSS
Inc.). A P-value of 0.05 was considered statistically significant.

Results
After the implementation of inclusion criteria, 116 patients were included for the final diagnosis (male: 82,
female: 34, mean age: 57.4 years). The frequency of HE was 35.3%, 25.8%, 19.8%, 15.5%, 13.7%, and 12.9%,
for 10%, 20%, 25%, 33%, 40%, and 50% enlargement of sBGH. The average interval change in volume of the
hematoma was +19.8 %. The prevalence of the radiology signs was 7.7%, 12.9%, 23.2%, 16.3%, and 6.8% for
the black-hole, blend, swirl, satellite, and island signs, respectively.

The performance of machine learning models based on the “clinical” and “Radiology signs” features was
poor and significantly lower than the Radiomic models. The Random Forest-based model on 10 selected
Radiomic features achieved the best performance (for 25% hematoma enlargement) with an AUC of 0.9 on
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the training dataset and 0.89 on the test dataset.

The machine learning models based on a combination of all features (clinical+Radiology signs+Radiomic
features) were the same as the Radiomic model because the feature selecting algorithm did not select any
feature from the “clinical” and “Radiology sign” features as a predictive one. The only exception was the
model to predict a 40% enlargement of hematoma in which “history of hypertension” and “treatment by
anti-coagulation” were among the selected features. The results of this study are summarized in Tables 2-5.

Definition of HE by
volume enlargement
 

Best
model

AUC Accuracy Most predictive features

10% KNN 0.58 63%
INR, systolic blood pressure, ICH score, swirl sign, blood glucose level, diastolic
blood pressure, NIHSS score, history of ICH, antiplatelet treatment, age

20% NN 0.53 66%
INR, swirl sign, NIHSS score, history of ICH, age, ICH score, anticoagulant
treatment, history of cerebral infarction, systolic blood pressure, blood glucose level

25% GB 0.63 75%
Age, INR, history of cerebral infarction, systolic blood pressure, NIHSS score, history
of ICH, ICH score, anticoagulant treatment, swirl sign, diastolic blood pressure

33% SVM 0.57 83%
Systolic blood pressure, history of cerebral infarction, history of ICH, NIHSS score,
age, INR, anticoagulant treatment, diastolic blood pressure, ICH score, swirl sign

40% NN 0.57 81%
Systolic blood pressure, history of ICH, INR, anticoagulant treatment, NIHSS score,
ICH score, diastolic blood pressure, age, history of hypertension, history of cerebral
infarction

50% NN 0.62 83%
Systolic blood pressure, INR, history of ICH, anticoagulant treatment, NIHSS score,
island sign, diastolic blood pressure, satellite sign, ICH score, age

TABLE 2: Performance of different machine learning models to predict different thresholds of HE
from the “clinical”+“Radiology Signs” at the time of admission.
AUC: area under the curve, KNN: k-Nearest Neighbors, NN: Neural Network, GB: Gradient Boosting, SVM: Support Vector Machine, ICH: intracerebral
hemorrhage, HE: hematoma expansion, INR: international normalized ratio, NIHSS: National Institutes of Health Stroke Scale.
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Definition of
HE by
volume
enlargement
 

Best
model

AUC
(train,
test)

Accuracy
(train,
test)

Selected features

10% RF
0.759,
0.789

0.708,
0.792

Skewness (first order), variance (first order), median (first order), MeanAbsoluteDeviation
(first order), 90 percentile (first order), Autocorrelation (glcm),
GrayLevelNonUniformityNormalized (glrlm), SmallDependenceHighGrayLevelEmphasis
(gldm), GrayLevelVariance (glrlm), RunEntropy (glrlm)

20% GB
0.881,
0.815

0.824,
0.875

Variance (first order), strength (ngtdm), JointEntropy (glcm), ClusterTendency (glcm),
DependenceVariance (gldm), ShortRunLowGrayLevelEmphasis (glrlm), Kurtosis (first order),
Idmn (glcm), skewness (first order), GrayLevelNonUniformityNormalized (glrlm)  

25% RF^
0.9,
0.89

0.804,
0.875

Variance (first order), HighGrayLevelRunEmphasis (glrlm),
SmallAreaHighGrayLevelEmphasis (glszm), SumEntropy (glcm), Mean (first order),
ZonePercentage (glszm), ZoneEntropy (glszm), SumSquares (glcm), GrayLevelVariance
(gldm)  

33% RF
0.858,
0.725

0.827,
0.833

Variance (first order), MeanAbsoluteDeviation (first order), LowGrayLevelRunEmphasis
(glrlm), HighGrayLevelZoneEmphasis (glszm), RobustMeanAbsoluteDeviation (first order),
HighGrayLevelEmphasis (gldm), ShortRunLowGrayLevelEmphasis (glrlm),
GrayLevelVariance (glrlm), HighGrayLevelRunEmphasis (glrlm), ZoneEntropy (glszm)  

40% LGBM
0.711,
0.81

0.837,
0.792

Flatness (first order), history of hypertension, LargeAreaLowGrayLevelEmphasis (glszm),
SmallAreaLowGrayLevelEmphasis (glszm), HighGrayLevelRunEmphasis (glrlm),
anticoagulation treatment, ClusterShade(glcm), ShortRunLowGrayLevelEmphasis (glrlm),
Mean (first order), GrayLevelNonUniformity (glszm) 

50% LR*
0.719,
0.556

0.73,
0.833

LargeAreaEmphasis (glszm), LargeAreaLowGrayLevelEmphasis (glszm), MeshVolume
(Shape), LargeAreaHighGrayLevelEmphasis (glszm), SurfaceArea (Shape),
LargeDependenceHighGrayLevelEmphasis (gldm), GrayLevelNonUniformity (glelm),
GrayLevelNonUniformity (gldm), RunLengthNonUniformity (glrlm), Busyness (ngtdm)  

TABLE 3: The performance of the Radiomic models to predict the different thresholds of HE.
Models were ranked on AUC, and comparison was performed on default hyperparameters. Hyperparameters for RF are 100 estimators. ^Performed
additional hyperparameter tuning on top model here, which found the optimal parameters were: max depth = 5, max features = 0.99, max leaf nodes =
None, with 11 estimators with min sample leaf of 2 and min sample split of 8. *Random Forest was the second-best model. HE: hematoma expansion,
AUC: area under the curve, RF: Random Forest, GB: Gradient Boosting, LGBM: Light Gradient Boosting Machine, LR: Logistic Regression, glcm: gray-
level co-occurrence matrix, glrlm: gray-level run-length matrix, gldm: gray-level dependence matrix, ngtdm: neighborhood gray-tone difference matrix,
glszm: gray level size zone.
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Definition of HE by
volume enlargement
 

Best
model

AUC Accuracy Most predictive features

10% KNN 0.58 63%
INR, systolic blood pressure, ICH score, diastolic blood pressure, NIHSS score,
history of ICH, antiplatelet treatment, age, history of cerebral infarction

20% LR 0.54 61%
INR, NIHSS score, history of ICH, age, ICH score, anticoagulant treatment,
history of cerebral infarction, systolic blood pressure, blood glucose level, diastolic
blood pressure

25% GB 0.66 76%
Age, INR, history of cerebral infarction, systolic blood pressure, NIHSS score,
history of ICH, ICH score, anticoagulant treatment, diastolic blood pressure, blood
glucose level

33% SVM 0.61 83%
Systolic blood pressure, history of cerebral infarction, history of ICH, NIHSS
score, age, INR, anticoagulant treatment, diastolic blood pressure, ICH score,
history of hypertension

40% SVM 0.6 87%
Systolic blood pressure, history of ICH, INR, anticoagulant treatment, NIHSS
score, ICH score, diastolic blood pressure, age, history of hypertension, history of
cerebral infarction

50% AdaBoost 0.6 83%
Systolic blood pressure, INR, history of ICH, anticoagulant treatment, NIHSS
score, diastolic blood pressure, ICH score, age, history of cerebral infarction,
history of hypertension

TABLE 4: Performance of different machine learning models to predict different thresholds of HE
from the clinical data at the time of admission.
HE: hematoma expansion, AUC: area under the curve, KNN: k-Nearest Neighbor, LR: Logistic Regression, GB: Gradient Boosting, SVM: Support Vector
Machine, Ada Boost: Adaptive Boosting, ICH: intracerebral hemorrhage, INR: international normalized ratio, NIHSS: National Institutes of Health Stroke
Scale.

Definition of HE by volume enlargement  Best model AUC Accuracy

10% LR 0.54 63%

20% KNN 0.5 67%

25% SVM 0.5 78%

33% SVM 0.46 83%

40% SVM 0.46 87%

50% LR 0.51 87%

TABLE 5: Performance of machine learning models to predict HE from five radiology signs of the
baseline CT.
HE: hematoma expansion, AUC: area under the curve, LR: Logistic Regression, KNN: k- Nearest Neighbor, SVM: Support Vector Machine.

Discussion
In this study, we developed different machine learning models based on clinical, radiology signs, and
Radiomics features to predict HE. The ICH, GCS, and NIHSS scores, history of hypertension (HTN), systolic
and diastolic blood pressure at the time of admission, INR, glucose level, and treatment by antiplatelets and
anticoagulants were associated with moderate accuracy in predicting HE in sBGH. On the other hand, the
models based on the Radiomic features performed much higher. We achieved the best performance by the
Random Forest based on the 10 most predictive Radiomic features for a threshold of 25% as the definition of
HE. Our study shows that using a threshold of 25% enlargement of hematoma as the definition of HE is more
suitable for machine learning models. Our study is based on 3D volume measurement of hematoma volume
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in the range of cubic millimeters and is superior to traditional measurements based on the longest diameters
on 2D or 3D images.

So far, the application of Radiomic in predicting cerebral HE is promising. Ma et al. reported an accuracy of
82% in predicting HE in hypertensive intraparenchymal hematomas [23]. Song et al. compared the “Clinical-
Radiology” models and Radiomic models. They reported the Radiomic model outperformed the “clinical-
radiology” models [27]. In a recent study, Radiomic analysis and quantitative satellite sign can identify the
association between quantitative imaging features and hematoma pathophysiology and predict
intracerebral hematoma expansion effectively and precisely in CT images [28]. However, not all studies
about the role of Radiomic in HE are promising; Chen et al. have reported a moderate performance of
Radiomics in HE [29]. Our results are compatible with another work [30], where authors compared Radiomics
with the clinical model to predict HE. They also reported that Radiomics outperformed the clinical model
[30]. We also added the radiology signs to the clinical model, and again Radiomics outperformed the
“clinical+radiology sign” model. Pszczolkowski et al. have reported that the Radiomic models outperformed
the “radiology-signs” model and are equal to the “clinical model” in HE prediction [31]. Based on our study,
the Radiomics models outperform both “clinical” and “radiology-sign” models individually or in
combination. Like our study, Xie et al. also reported that Radiomic outperformed radiology-based models for
HE [32]. Their radiology-based model constituted of features regarding location, shape, density,
hypodensities within hematoma, swirl sign, blend sign, black-hole sign, and island sign.

We and other prior similar studies [23,27-32] have used different datasets and totally different Radiomics
pipelines (different Radiomics software, number of extracted features, number of selected features, machine
learning); despite these differences in study design, our results are very similar. This suggests that the
Radiomic analysis can capture enough information from the hematoma to predict HE regardless of patients’
population, scanning techniques, and Radiomics pipeline. Given this generalizability, there is a high chance
of clinical application of Radiomics for HE. Moreover, we used CT images acquired on different vendor
machines, and we did not use any harmonization techniques (e.g., ComBat harmonization) on the Radiomics
features; hence, our model has a high performance. Again, this would indicate the generalizability of
Radiomics for HE.

However, this study has several limitations. It is a pilot retrospective study on a relatively small patient
population. Although the laboratory data is fairly accurate, the clinical data (e.g., ICH, GCS, and NIHHS
scores) were recorded by different physicians, which can introduce variabilities in the study. To increase
accuracy, all sBGHs were manually segmented slice by slice and were confirmed by the second radiologist,
which is a very time-consuming approach and cannot be replicated in daily clinical practice. Only basal
ganglia hematoma was evaluated for segmentation, and associated intra-ventricular bleeding was not used.
Our results are focused on the basal ganglia hematoma and may not be generalized for parenchymal
hemorrhages in other regions of the brain (pontine, cerebellar, and lobar hematomas). In our study, the
hematoma itself was segmented; however, the perihematomal Radiomics features can also predict the
chance of HE, as proposed by Zhu et al. [10]. In the future, larger prospective studies will be needed to
validate the role of Radiomics in predicting HE in sBGH patients.

Conclusions
Our pilot results show that Radiomics may outperform conventional “clinical” and “radiology sign” models
in HE. Random Forest models are promising to predict HE by Radiomics. Although the application of
Radiomics in HE should be tested in prospective studies, our results and previously published data are very
promising.
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