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Abstract
Background
Cone-beam computed tomography (CBCT) imaging offers high-quality three-dimensional (3D) acquisition
with great spatial resolution, given by the use of isometric voxels, when compared with conventional
computed tomography (CT). The current literature supports a median reduction of 76% (up to 85%
reduction) of patients’ radiation exposure when imaged by CBCT versus CT. Clinical applications of CBCT
imaging can benefit both medical and dental professions. Because these images are digital, the use of
algorithms can facilitate the diagnosis of pathologies and the management of patients. There is pertinence
to developing rapid and efficient segmentation of teeth from facial volumes acquired with CBCT.

Methodology
In this paper, a segmentation algorithm using heuristics based on pulp and teeth anatomy as a pre-
personalized model is proposed for both single and multi-rooted teeth.

Results
A quantitative analysis was performed by comparing the results of the algorithm to a gold standard obtained
from manual segmentation using the Dice index, average surface distance (ASD), and Mahalanobis distance
(MHD) metrics. Qualitative analysis was also performed between the algorithm and the gold standard of 78
teeth. The Dice index average for all pulp segmentation (n = 78) was 83.82% (SD = 6.54%). ASD for all pulp
segmentation (n = 78) was 0.21 mm (SD = 0.34 mm). Pulp segmentation compared with MHD averages was
0.19 mm (SD = 0.21 mm). The results of teeth segmentation metrics were similar to pulp segmentation
metrics. For the total teeth (n = 78) included in this study, the Dice index average was 92% (SD = 13.10%),
ASD was low at 0.19 mm (SD = 0.15 mm), and MHD was 0.11 mm (SD = 0.09 mm). Despite good quantitative
results, the qualitative analysis yielded fair results due to large categories. When compared with existing
automatic segmentation methods, our approach enables an effective segmentation for both pulp and teeth.

Conclusions
Our proposed algorithm for pulp and teeth segmentation yields results that are comparable to those
obtained by the state-of-the-art methods in both quantitative and qualitative analysis, thus offering
interesting perspectives in many clinical fields of dentistry.

Categories: Radiology, Dentistry
Keywords: pulpal segmentation, dental segmentation, segmentation algorithm, image processing and analysis, cbct

Introduction
Cone-beam computed tomography (CBCT) imaging is finding ever-greater success in radiology with ever-
widening fields of applications in both medical radiology and radiation oncology. Current CBCT imaging
offers isotropic voxels of 0.05 mm. Computed tomography (CT) renders a maximum in-plane spatial
resolution of 0.15 mm and a through-plane spatial resolution of 0.20 mm, whereas multi-detector CT offers
0.5 mm detector elements [1]. The higher spatial resolution of the CBCT makes it an appropriate choice for
the exploration of selected small anatomical structures such as the teeth [2].

The high quality of CBCT [3] acquisitions allow for diagnostic opportunities following three-dimensional
(3D) modeling of dental structures. While very high resolution facilitates dental segmentation, the prospect

1 2, 3 2, 3, 4 1, 2 2, 4

 
Open Access Original
Article  DOI: 10.7759/cureus.38066

How to cite this article
Harris P, Harris L, Harrison J, et al. (April 24, 2023) Automatic Pulp and Teeth Three-Dimensional Modeling of Single and Multi-Rooted Teeth
Based on Cone-Beam Computed Tomography Imaging: A Promising Approach With Clinical and Therapeutic Outcomes. Cureus 15(4): e38066.
DOI 10.7759/cureus.38066

https://www.cureus.com/users/105964-philippe-harris
https://www.cureus.com/users/431736-louis-harris
https://www.cureus.com/users/431738-j-r-me-harrison
https://www.cureus.com/users/431734-matthieu-schmittbuhl
https://www.cureus.com/users/28829-jacques-de-guise
javascript:void(0)
javascript:void(0)
javascript:void(0)


of routinely obtaining a 3D model of dental pulp remains a real challenge, most notably because of the
often-complex shape and relative morphological variability of root canals [4].

Several approaches have been proposed in the literature for dental segmentation from CBCT acquisitions.
Gao et al. proposed adaptive active contour tracking algorithms for teeth segmentation in 2010 [5]. In a 2016
study, a technique was proposed allowing tooth segmentation while having teeth contact using CT images
[6]. Some literature presents active contour-based segmentation with manual initiation and custom-made
constraints to allow slice-by-slice contour propagation [5-7]. A main limitation of these techniques is error
accumulation.

To improve segmentation quality, a group proposed the superposition of laser-acquired dental images with
CT images to create a more truthful crown reconstruction, on which CT acquisitions of the roots were
merged [8]. Other similar studies have used this concept [9-11]. As outlined in our previous research,
limitations of using prior shape model segmentation include requiring large databases to cope with shape
variability of the natural dentition [12].

In 2019, a novel method was introduced using automatic axial slice thresholds. The proposed technique
allows for rapid segmentation because the characteristics map histogram is used for optimal threshold
calculations [13]. Inherent limitations of the method include cases in which pulp tissue is easily mistaken for
hard tissues (e.g., calcified root canal on CBCT).

In 2021, automatic segmentation of the jaws, teeth, and CBCT background information was achieved by
training a mixed-scale dense convolutional neural network [14]. This group’s algorithm yielded good results
(average Dice coefficient for teeth of 0.945 ± 0.021, where 1 is better and 0 is worse). Additional use of deep
learning was proposed with a multitask 3D convolutional network and marker-controlled watershed
transform [15]. In recent years, several groups have reported teeth segmentation from deep-learning multi-
step algorithms [10,15-18].

In this study, we aim to develop rapid and efficient segmentation of teeth from the facial volume acquired
using CBCT. For this purpose, an algorithm for teeth segmentation based on pulp segmentation is proposed
for both single and multi-rooted teeth.

Materials And Methods
Segmentation of both single and multi-rooted teeth takes advantage of the teeth anatomy. As for the
embryologic development of teeth, we used pulps as inner structures, which have, in most cases, the same
morphological outline as their corresponding teeth. As described by Harrison et al., this technique uses
heuristics derived from knowledge of tooth anatomy where the pulp is used as a pre-personalized model for
the tooth shape and thus helps supervise 3D segmentation [12]. The following technical description heavily
relies on the proposed methodology from Harrison et al. [12]. Figure 1 summarizes the main steps of the
following methodology.

FIGURE 1: Flowchart showing a summary of the methodology.

Volume partitioning
Maxillary and Mandibular Separation

Separation of the dental arches (maxillary and mandible) is performed. Partitioning of the dental arches
from a CBCT acquisition can be easily obtained when the patient is in an open bite position during the
acquisition. In this position, maxillary and mandibular teeth do not overlap on axial slices.
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Similar to the method described by Yun et al., a threshold on the maximum intensity projection (MIP) is
used to differentiate between both dental arches [16]. An empirical threshold is applied on a sagittal MIP of
the original Digital Imaging and Communications in Medicine (DICOM) stack. Both maxillary and
mandibular dental crowns are identified with maximal intensity values. Spatial coordinates are used to train
a k-nearest neighbor classifier. A dental arch shape approximation is performed by a second-order
polynomial regression curve obtained from axial projection intensity levels.

Teeth Separation Planes

Once the dental arches are identified, teeth must be partitioned by finding boundary planes for adequate
teeth segmentation, followed by the establishment of teeth separation planes to ensure the isolation of each
tooth on the dental arch. This initial stage allows single tooth separation into a volume of interest (VOI) of
its own.

As described by Kim et al. [19], candidate planes are obtained using a cost profile analysis along the second-
order polynomial curves used for the shape approximation of dental arches. A Hanning filter is then used to
eliminate high frequencies caused by the pulp. These planes are then rotated along the x-axis and y-axis to
confirm the correct positioning of said planes. Therefore, candidate planes are described by the following
equation, as presented by Harrison et al [12]:

Where  is a solution plane , is the plane’s normal vector , , is a sample point

located on the plane’s surface , and \) are the respective grayscale and gradient value

interpolated at the sample point. Weighting coefficients are applied to both terms. The cost function is
evaluated for each combination of .  identifies the minimal cost value at every position 
 along the central arch curve.

Each volume is then analyzed separately to perform dental segmentation, as described in the next section.

Dental segmentation
Embryology dictates that teeth are formed around the pulp. Every root and cusp has a corresponding
segment of pulp. On a CBCT image, teeth appear as bright volumes and the pulp appears as a dark cavity.
The method used to segment the pulp relies on this observation.

Pulp segmentation is done using morphological operations. Pulp segmentation relies on three main steps,
with each performed on VOI axial slices. First, an initial marker is obtained by selecting the second-largest
component in the result of the difference between the original image and the hole-filled image. Then, a
mask is obtained by applying a hole-filling algorithm on top of a black top-hat transformation on the
Gaussian blurred initial image. This results in an image where the valleys (dark regions enclosed in brighter
ones) appear brighter. Finally, a masking reconstruction is done using the marker and the created mask. This
operation consists of repeatedly performing the masking and dilatation of the marker until the result stops
changing. Figure 2 shows an example of this process on tooth 1.6.
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FIGURE 2: Coronal view of a molar (1.6) showing the intermediate steps
involved in the pulp segmentation algorithm.
(A) Original image. (B) The difference between A and hole-filled A. (C) A binary marker created from B. (D) A
smoothed with a Gaussian filter. (E) D after black top hat. (F) Hole-filled E image (mask). (G) Final pulp
segmentation (after masking reconstruction).

To avoid excess segmentation caused by the overflow outside of the pulp region of the hole-filled image used
to create the marker, a threshold is applied to the result of the difference between the original image and the
hole-filled image. The threshold value is obtained using Otsu’s method [20]. The size of the marker is also
reduced to avoid overlap with an unwanted mask part used for reconstruction. Only the region around the
voxel where the difference between the filled image and the original image is the highest is kept. A high
difference between the filled image and the initial image implies a higher probability that this region belongs
to the pulp because it is a region of low-intensity voxels surrounded by higher intensities on the original
image.

Image noise and beam hardening effects can render some parts of the dentine to appear darker on images.
The segmentation method considers the noise in general and includes all phenomena present in the image,
with the partial volume effect being one of them. Without making any distinction between these different
phenomena, the method developed nevertheless aims to, from an empirical approach of choice variations for
thresholds or anatomical heuristics, optimize the quality of pulp segmentation. On the valley-enhanced
image, these regions appear connected to the pulp, thus leading to a segmentation overflow. To limit this
problem, a mask is applied on top of the segmentation. The mask is constructed keeping only voxels where
the original image values are greater than a threshold. This value is set by taking the midpoint value between
the average voxel value in regions segmented by the initial marker and the average voxel value in
surrounding regions. This mask is only applied in the crown region of the tooth volume to avoid cutting root
segmentation. The tooth’s orientation is obtained by comparing the first slice index corresponding to the
pulp chamber, found by searching for the slice with the largest single segmented area, to the index of the
first and last slices where there is a segmentation. Starting from the identified axial plane and going toward
the roots, the last slice with a single segmented zone is considered the apical limit of the crown region.

Apical overflows can occur because of the lower contrast between pulp and dentine in root canals or the
opening of the apex. These overflows are characterized by a rapid change in the segmented pulp shape. To
limit this problem, the obtained segmentation is compared to a slice area evolution model. This comparison
is not done when the tooth is a molar because these can have very different morphologies which makes it
very complex for model creation. Ground truth manual segmentations are used to create a model for each
tooth type and position. For each reference segmentation corresponding to the targeted tooth type and
position, the area of each axial slice of the reference mask is calculated. The resulting vectors are
normalized, and the values are interpolated to obtain 100-element long vectors. The mean and standard
deviation (SD) of vector gradients are computed to obtain a model of the speed of evolution of slice areas.
The same gradient, normalization, and interpolation calculations are applied to the automatic pulp
segmentation result. The resulting vector is smoothed with a uniform filter and is compared to the model’s
vectors. Only the slices belonging to the last fifth of the mask from the root’s apex are considered for
comparison. No cut is made if the obtained gradient is within two SDs of the mean of the model’s gradient.
Otherwise, the cut is made at the most coronal deviation. The corresponding zone is removed from the
segmentation. Figure 3 exemplifies this process.
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FIGURE 3: Area evolution model and its application to cut an apical
segmentation overflow.
(A) Model with a gradient and margin of two standard deviations. B (i): Cut of the apical overflow and (ii) analyzed
region. (C) Segmentation before the cut. (D) Segmentation after the cut.

The pulp segmentation is used as an in situ before tooth segmentation using hierarchical surface
deformation [21]. The initial segmentation is iteratively deformed to obtain a final mesh representing the
tooth segmentation. Each iteration consists of two main steps. First, an intensity profile search is performed
to obtain a target boundary to which vertices are moved toward. This method is based on the proposed
implementation presented by Chav et al. [21]. The intensity profiles  are described by the following
equation: 

Where  is a linear interpolation method and  is the length along which the search is

performed along the normal  of the vertex . The parameter  is reduced at every iteration to limit the
risk of passing over the tooth’s limit. A gradient and Gaussian-based cost function is used to determine the
position of a potential characteristic of interest  along the computed profile.

To limit the over-segmentation that can occur where crowns touch their neighbors, the set of points of an
intensity profile crossing the tooth separation plane is penalized. These points are ignored when performing
a gradient search to prevent a vertex from being moved outside of the tooth’s VOI. Points meeting the
following criteria are excluded: 

Where  and  are constants of adjacent plane .

Evaluation of pulp and teeth segmentation
Our algorithm is evaluated quantitatively and qualitatively on a dataset of 78 teeth and compared against
the manual segmentation of pulp and teeth performed by a subject matter expert having significant dental
anatomy knowledge.

Quantitative evaluation was done using three metrics [22]. The Dice index is a value varying between 0 and 1
used to express the amount of overlap between the automatic and the reference segmentation. The average
symmetric surface distance (ASD) measures the average distance between the surface of the two
segmentations. The Mahalanobis distance (MHD) measures the distance between point clouds which reduces
the importance accorded to local differences and gives a better indication of the global similarities between
the automatic and manual segmentation results. One author (with significant dental anatomy knowledge)
manually segmented pulp and teeth volumes using 3DSlicer software [23], thus rendering a reference
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dataset. Qualitative evaluation is done by one expert reviewer based on a subjective visual comparison of the
3D automatic segmentation results (both initial and improved algorithms) to the reference manual
segmentation using the 3DSlicer software [23]. Each segmentation result is categorized into one of the eight
categories described in Table 1. Examples of these categories are illustrated in Figure 4.

Category Description

Good The result is globally well-aligned with the reference segmentation

Apical overflow The segmentation overflows from the root apex

Crown overflow The segmentation overflows from the crown

Missing canal One or more root canal is missing

Missing canal extremity The extremity of one or more root canal is missing

Segmentation error The automatic segmentation has failed

Other Other segmentation errors (e.g., scattered overflows, missing parts)

TABLE 1: Categories used for the qualitative evaluation of automatic segmentation results.

FIGURE 4: For (A) pulp segmentation and (B) tooth segmentation,
examples of categories for (i) good, (ii) crown overflow, (iii) apical
overflow, (iv) missing canal, and (v) missing canal extremity.

Results
The initial data included 83 teeth. However, three teeth were rejected because the volume-partitioning
phase extracted the neighboring teeth. Two other teeth were rejected because the result of the pulp
segmentation was outside the tooth, making the tooth segmentation impossible. These five teeth were not
considered when computing quantitative and qualitative metrics for both teeth and pulp segmentation
because they are considered outliers.

Quantitative analysis
Pulp Segmentation

Table 2 shows the quantitative results of pulp segmentation. The Dice index average for single-rooted teeth
(n = 46) was 83.97% (SD = 7.49%). For multi-rooted teeth (n = 32), the Dice index average was 83.61% (SD =
4.98%). For total teeth (n = 78), the Dice index average was 83.82% (SD = 6.54%).
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 Single-rooted (n = 46) Multi-rooted (n = 32) Global (n = 78)

 
Incisor (n =
22)

Canine (n =
16)

Premolar (n = 8) All types
Premolar (n =
11)

Molar (n =
21)

All types  

Dice (%) (Higher is better)

Minimum 75.89 41.26 78.32 41.26 72.40 69.48 69.48 41.26

Maximum 90.61 89.62 88.84 90.61 85.39 89.53 89.53 90.61

Average 84.69 83.18 83.55 83.97 79.83 85.58 83.61 83.82

SD 4.45 11.54 3.54 7.49 4.60 3.98 4.98 6.54

ASD (mm) (Lower is better)

Minimum 0.10 0.12 0.11 0.10 0.17 0.12 0.12 0.10

Maximum 0.43 3.10 0.18 3.10 0.41 0.34 0.41 3.10

Average 0.16 0.34 0.14 0.22 0.25 0.18 0.20 0.21

SD 0.07 0.74 0.02 0.44 0.08 0.05 0.07 0.34

MHD (mm) (Lower is better)

Minimum 0.02 0.03 0.04 0.02 0.08 0.06 0.06 0.02

Maximum 0.60 1.66 0.17 1.66 0.53 0.45 0.53 1.66

Average 0.14 0.22 0.10 0.16 0.33 0.19 0.24 0.19

SD 0.12 0.39 0.04 0.25 0.14 0.10 0.13 0.21

TABLE 2: Pulp segmentation metrics.
SD: standard deviation; ASD: average surface distance; MHD: Mahalanobis distance

ASD for pulp segmentation was 0.22 mm (SD = 0.44 mm) for single-rooted teeth (n = 46). Multi-rooted teeth
(n = 32) yielded an average ASD of 0.20 mm (SD = 0.07 mm).

Pulp segmentation compared with MHD averages of single-rooted teeth (n = 46) yielded 0.16 mm (SD = 0.25
mm). The multi-rooted teeth (n=32) average was 0.24 mm (SD = 0.13 mm). All teeth (n = 78) MHD average
was 0.19 mm (SD = 0.21 mm).

Teeth Segmentation

Teeth segmentation metrics presented similar results as pulp segmentation metrics (Table 3). The Dice
average for single-rooted teeth (n = 46) was 93.75% (SD = 6.47%). For multi-rooted (n = 32) teeth, the Dice
average was also high at 89.50% (SD = 18.83%). Accordingly, the total teeth (n = 78) Dice average was 92.00%
(SD = 13.10%).
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 Single-rooted (n = 46) Multi-rooted (n = 32)

Global (n = 78)
 

Incisor (n =
22)

Canine (n =
16)

Premolar (n = 8) All types
Premolar (n =
11)

Molar (n =
21)

All types

Dice (%) (Higher is better)

Minimum 91.55 54.08 82.88 54.08 17.28 92.11 17.28 17.28

Maximum 96.34 96.77 96.12 96.77 96.06 96.68 96.68 96.77

Average 94.76 92.71 93.05 93.75 78.82 95.09 89.50 92.00

SD 1.36 10.38 5.15 6.47 30.06 1.41 18.83 13.10

ASD (mm) (Lower is better)

Minimum 0.10 0.12 0.12 0.10 0.13 0.11 0.11 0.10

Maximum 0.20 1.32 0.54 1.32 0.53 0.26 0.53 1.32

Average 0.15 0.23 0.21 0.19 0.25 0.17 0.20 0.19

SD 0.03 0.29 0.16 0.18 0.13 0.05 0.09 0.15

MHD (mm) (Lower is better)

Minimum 0.05 0.01 0.02 0.01 0.04 0.01 0.01 0.01

Maximum 0.23 0.44 0.54 0.54 0.20 0.21 0.21 0.54

Average 0.09 0.12 0.16 0.11 0.13 0.08 0.10 0.11

SD 0.05 0.10 0.20 0.11 0.04 0.05 0.05 0.09

TABLE 3: Tooth segmentation metrics.
SD: standard deviation; ASD: average surface distance; MHD: Mahalanobis distance

Single-rooted teeth (n = 46) ASD was 0.19 mm (SD = 0.18 mm). Multi-rooted teeth (n = 32) ASD was 0.20 mm
(SD = 0.09 mm). Hence, overall teeth (n = 78) ASD was low at 0.19 mm (SD = 0.15 mm).

Finally, single-rooted teeth (n = 46) MHD was 0.11 mm (SD = 0.11 mm). Multi-rooted teeth (n = 32) MHD was
0.10 mm (SD = 0.05 mm). Accordingly, total teeth (n = 78) MHD was 0.11 mm (SD = 0.09 mm).

Qualitative analysis
Segmentation results for the 78 teeth and pulps were analyzed based on the subjective quality of
segmentation. The analysis classified the results as either (1) good, (2) apical overflow, (3) crown overflow,
(4) missing canal, (5) missing canal extremity, (6) segmentation error, or (7) other. Analysis was performed
subjectively by one expert reviewer based on a 3D rendering of segmented volumes with both initial and
improved algorithms. Results yielded 39 good pulp segmentations (Table 4) and 34 good teeth
segmentations (Table 5).
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Category

Single-rooted (n = 46) Multi-rooted (n = 32)
Total (n =
78)Incisor (n =

22)
Canine (n =
16)

Premolar (n =
8)

All
types

Premolar (n =
11)

Molar (n =
21)

All
types

Good 14 11 5 30 2 7 9 39

Apical overflow 1 0 1 2 0 0 0 2

Crown overflow 0 0 0 0 0 0 0 0

Missing canal 0 1 0 1 2 3 5 6

Missing canal
extremity

7 4 2 13 7 10 17 30

Other 0 0 0 0 0 1 1 1

TABLE 4: Qualitative results of pulp segmentation.

Category

Single-rooted (n = 46) Multi-rooted (n = 32)
Total (n =
78)Incisor (n =

22)
Canine (n =
16)

Premolar (n =
8)

All
types

Premolar (n =
8)

Molar (n =
21)

All
types

Good 15 7 2 24 1 9 10 34

Apical overflow 0 3 4 7 0 0 0 7

Crown overflow 5 2 0 7 2 1 3 10

Missing canal 0 1 0 1 0 1 1 2

Missing canal
extremity

1 2 2 5 6 5 11 16

Other 1 1 0 2 2 5 7 9

TABLE 5: Qualitative results of tooth segmentation.

Discussion
The main limitations of the presented algorithm occurred either with apical overflow or crown excessive
segmentation. Apical overflow might be explained by the limited number of voxels creating the apex region
and by the poor definition between apices and the surrounding periodontal ligament, as in the case of open
apices. On the other hand, crown excessive segmentation might be explained by inherent pulp anatomy.
Pulp coronal regions differ from their corresponding teeth coronal counterparts, especially in the posterior
where each cusp has its corresponding pulp projection. Pulps are not consistent and greatly differ both
between individuals and among one individual. For a given tooth, several different pulp pathways exist and
might not be reflective of the corresponding teeth shapes. Therefore, teeth segmentation solely based on
pulp segmentation might be biased for embryological reasons.

Overall low MHD may be suggestive of a more realistic pulp segmentation based on results provided by the
expert segmentation with the optimized algorithm. A high Dice index average can be explained by high
numbers of minimums which allow for high Dice index results.

Despite good quantitative results, the qualitative analysis yielded fair results due to large categories. For
example, the amount of apical overflow was not measured, and therefore, minimal over-segmentation
(Figure 5A) was classified in the same category as excessive over-segmentation (Figure 5B).

2023 Harris et al. Cureus 15(4): e38066. DOI 10.7759/cureus.38066 9 of 12

javascript:void(0)
javascript:void(0)


FIGURE 5: Three-dimensional rendering of segmented (A) pulp and
tooth 2.4. (B) Overlapping of expert’s segmentation (dark blue) and
segmentation algorithm result (light blue).

When compared with existing automatic segmentation methods, as previously described, our approach
enables an effective segmentation for both pulp and teeth. Despite slightly lesser precision on the Dice index
(our method: 91.17% ± 14.99%; Wang et al.: 94.5% ± 2.1%) [14] compared to deep learning algorithms, our
technique does not require training of a neural network, thus offering a readily exploitable automatic
segmentation algorithm. Additionally, to our knowledge, no adequate CBCT image dataset is available for
neural network training.

In a clinical context, pulp modeling has many diagnostic and therapeutic interests. Probably the most
frequent and clinically relevant encountered variations of pulp morphology are calcified root canals or
accessory canals (MB2). Variations in shape and pulp size can help clinicians in diagnostic approaches,
especially in the detection of abnormalities constituting, often complex, syndromic phenotypic tables. Of
note, one of the best-known pulp abnormalities is perhaps taurodontism, which corresponds to an increase
in the pulp size. The detection of this pulp defect, sometimes difficult to assess because of its gradient of
phenotypic expression, may be a contributing factor in the diagnosis of some syndromes in the ectodermic
dysplasia group (e.g., tricho-dento-osseous syndrome, hypohidrotic ectodermic dysplasia) [24-27] or other
syndromes such as Down syndrome [28], hypophosphatemia [29] and Nance-Horan syndrome [30,31]. At the
therapeutic level, rapid access to pulp modeling can allow the dentist or endodontist to better appreciate the
morphology of the root system, anticipate its anatomical difficulties, and, thus, facilitate treatment planning
[32-35].

Other disciplinary fields can benefit from this pulp modeling and more specifically from the quantification
of pulp volume. In physical anthropology, variations in pulp size can be as much a marker of sexual
dimorphism as well as inter-population differences that can improve the understanding of the
polymorphism of the current human species [36-40]. These markers can also have a great deal of interest in
forensic science, particularly in the field of forensic identification [41-43].

Teeth 3D modeling from CBCT acquisitions would provide clinicians with additional therapeutic possibilities
while improving existing procedures. A brief overview of those clinical applications includes diagnostic and
planning tools or procedure aids. In an orthodontic context, current scanning technologies allow for fast and
reliable data for virtual diagnosis and virtual treatment planning [44]. However, imaging of the dental arches
by way of intraoral scanning devices limits the interpretation of roots’ movements in relation to adjacent
anatomical structures and surrounding periodontium. Furthermore, digital scanning and CBCT of the dental
arches enable proper diagnosis and construction of surgical splints [45]. Additionally, in cases such as
Wilcko’s periodontally accelerated osteogenic orthodontics [46], proper root segmentation may enable
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advanced planning and use of surgical guides, as required. Furthermore, in case of immediate implant
placement, the virtual tooth extraction based on teeth 3D modeling allows for better surgical planning,
makes the procedure more accurate, and reduces surgery time.

For all these clinical and biological issues, numerical segmentation and pulp modeling are fundamental
issues. A robust, fast, and accessible method to generate from CBCT images, a 3D model of teeth pulp could
indeed be of great help.

Conclusions
Our segmentation algorithm is a readily exploitable automatic segmentation tool that does not require the
training of a neural network. It yields comparable results to the state-of-the-art on both qualitative and
quantitative analysis. Validation against an expert’s database demonstrated the consistency and accuracy of
this fully automatic teeth segmentation algorithm. Further research should include improvement in the
apical segmentation of multi-rooted teeth.
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