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Abstract
Introduction
Cone beam computed tomography (CBCT) plays an important role in image-guided radiation
therapy (IGRT), while having disadvantages of severe shading artifact caused by the
reconstruction using scatter contaminated and truncated projections. The purpose of this study
is to develop a deep convolutional neural network (DCNN) method for improving CBCT image
quality.

Methods
CBCT and planning computed tomography (pCT) image pairs from 20 prostate cancer patients
were selected. Subsequently, each pCT volume was pre-aligned to the corresponding CBCT
volume by image registration, thereby leading to registered pCT data (pCTr). Next, a 39-layer

DCNN model was trained to learn a direct mapping from the CBCT to the corresponding
pCTr images. The trained model was applied to a new CBCT data set to obtain improved CBCT

(i-CBCT) images. The resulting i-CBCT images were compared to pCTr using the spatial non-

uniformity (SNU), the peak-signal-to-noise ratio (PSNR) and the structural similarity index
measure (SSIM).

Results
The image quality of the i-CBCT has shown a substantial improvement on spatial uniformity
compared to that of the original CBCT, and a significant improvement on the PSNR and the
SSIM compared to that of the original CBCT and the enhanced CBCT by the existing pCT-based
correction method.

Conclusion
We have developed a DCNN method for improving CBCT image quality. The proposed method
may be directly applicable to CBCT images acquired by any commercial CBCT scanner.

Categories: Medical Physics, Radiation Oncology, Quality Improvement
Keywords: cone beam ct, planning ct, deep learning, convolutional neural network, image quality,
deformable image registration
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Introduction
Cone beam computed tomography (CBCT) plays an important role in image-guided radiation
therapy (IGRT), while having disadvantages of severe shading artifact caused by the
reconstruction using scatter contaminated and truncated projections [1-4]. Scatter correction
for the CBCT has been extensively studied so far [3]. To remove scattered photons from the
projection images, some attempts were made by changing the irradiating arrangement [5] or by
inserting an anti-scatter grid [6]. A more effective correction method was proposed by directly
estimating the scatter component using a lattice-shaped lead beam stopper positioned in front
of the X-ray tube [7], thus partly blocking the X-ray beams. The scatter component may be
therefore estimated from the pixel values in the X-ray blocked region on the acquired
projection image. Several methods for estimating the scatter component without modifying the
X-ray hardware have been proposed by way of either analytical [8, 9] or Monte Carlo modeling
approach [10, 11]). The analytical modeling approach has been widely employed for the scatter
correction in the current clinical CBCT systems, where the detected image was given by the
convolution integral of a direct transmission component and a point spread function. Then, the
direct transmission component can be restored by deconvolution [9]. An iterative method for
more accurate scatter correction was also proposed, where the deconvolution for the scattering
correction was repeatedly performed until the voxel values of the reconstructed image
converged [12].

Knowing the existing correction techniques mentioned above, the CBCT image quality may still
have room for improvement [2]. For example, planning computed tomography (pCT) was used
as prior information for further improvement since the image quality of the pCT was higher
than that of CBCT [13-15]. A known problem of this technique was that the scatter correction
may generate false structures in the CBCT images by considering anatomical structures
appeared only in the pCT images. In order to solve the issue, low spatial-frequency scatter
correction was performed without considering high-frequency components, based on the fact
that the anatomical structures had high-frequency components [13-15]. However, some image
errors still emerge in the area where pCT and CBCT have different anatomies, causing contrast
deterioration and tissue alteration [14]. In order to suppress the false structures in the CBCT
images, a method using sparse sampled low-frequency components has been proposed [15], but
high-frequency artifacts such as streaks still cannot be removed.

In the meantime, several deep learning algorithms were proposed to improve image quality
using different network models [16-18]. In particular, deep convolutional neural networks
(DCNN) are powerful techniques for feature extraction and were applied to image denoising,
deblurring and super-resolution [17, 18]. In the field of medical image processing, the DCNN
was already applied to lesion detection [19] and image segmentation [20]; however, there are
few studies for image quality improvement.

In this work, we propose a DCNN method for producing high-quality CBCT images. So far,
magnetic resonance imaging (MRI)-based synthetic computed tomography (CT) generation was
reported by applying a DCNN to learn a direct mapping from MRI images to their corresponding
CT images [21]. Low-dose CT image restoration was also realized by applying a DCNN to learn
mapping from low-dose CT images to corresponding normal-dose CT images [22]. We thus aim
to produce high-quality CBCT images by applying a DCNN to learn a direct mapping from the
original CBCT images to their corresponding pCT images. To our knowledge, this is the first
report proposing a DCNN method for improving CBCT image quality.

Materials And Methods
Data acquisition and image processing
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In this study, CBCT and pCT image pairs from 20 prostate cancer patients were used who
underwent stereotactic radiotherapy with an Elekta Synergy linear accelerator (Elekta AB,
Stockholm, Sweden). The pCT images had a matrix size of 512 by 512 on the axial plane with a
pixel size of 1.074 mm by 1.074 mm, and a slice thickness of 1 mm. Five CBCT data sets per
patient were obtained during the course of the treatment using a kV on-board imager (XVI)
with a tube voltage 120 kV, an exposure of 350 mAs and were output to match the resolution
and the slice thickness of the pCT images automatically using XVI.

Workflow of the preprocessing to create a pair image of CBCT and pCT to be learned by DCNN
was shown in Figure 1. To avoid any adverse impact of non-anatomical structures on a CBCT to
pCT registration and a model training procedure, binary masks were created to separate the
pelvic region from non-anatomical regions based on each pair of the CBCT and pCT images.
These masks were achieved by applying the Otsu auto-thresholding method on each CBCT and
pCT image, and the voxel values outside the mask region were entirely replaced with
a Hounsfield Unit (HU) of -1000. Then, the masked pCT volume data for each patient were
three-dimensionally pre-aligned to each of the five masked CBCT images by rigid and
deformable image registration (DIR) using an open source software, Elastix [23], resulting in a
registered pCT hereinafter referred to as pCTr. The binary mask image of each CBCT was

applied to each pCTr, and the voxel values outside the mask region were replaced with an HU of

-1000.

FIGURE 1: Workflow of the preprocessing to create a pair
image of CBCT and pCT to be learned by DCNN.
(a) and (b) show original CBCT and pCT before masking and DIR, whereas (c) shows masked
CBCT and (d) shows pCTr image masked by a binary mask image of CBCT. (c) and (d) depict an
example of the 2D image pair to be learned by DCNN.

CBCT: Cone beam computed tomography; pCT: Planning computed tomography; pCTr: Registered
planning computed tomography; DIR: Deformable image registration; DCNN: Deep convolutional
neural network.
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DCNN model
U-net convolutional network architecture was recently developed for fast and precise object
segmentation in a 2D image [24]. We modified the network as shown in Figure 2. The DCNN we
designed has 39 layers in total and has approximately 125.8 million parameters. These
parameters (θ) are optimized by minimizing a loss error between the predicted images and the
corresponding ground truth pCTr images Y. Given a set of CBCT images and their

corresponding pCTr images, the mean absolute error (MAE) as the loss function is defined as

follows:

where N is the number of training 2D images and M is the total number of pixel per 2D image.
The MAE loss function facilitates robust machine learning of outliers caused by noises, artifacts
and misalignment between the training CBCT and pCTr data. The proposed DCNN model was

implemented in a graphics processing unit (GPU) using the publicly available Keras package
[25]. The model was trained using the Adam stochastic optimization method [26]. The learning
rate  was set to 0.001 and the exponential decay rates  and  were set to 0.9 and 0.999,
respectively, which were the same values as the default setting suggested in the original paper
[26]. A batch size, which is a subset size of training samples for each iteration of the
optimization, was set to 10 as permitted by the GPU card. The calculation time for training was
nearly a day using a single NVIDIA Titan X GPU with 3584 cores and 12 GB memory.

FIGURE 2: Deep convolutional neural network (DCNN) model
with U-net architecture used in this study.
The model consisted of two parts: a downward encoding part (left half) and an upward decoding
part (right half), where 3 x 3 convolution layer with a rectified linear unit (Relu) as the activation
function (blue) and Max pooling/unpooling (red) with a 2 x 2 window and stride 2 were repeatedly
applied. Blocks were copied from the downward path to the upward path (green). 1 x 1
convolution was performed to generate the output image (light blue). The 2D image size and the
number of channels of the feature map from each layer were appropriately provided.

The performance of the proposed DCNN was evaluated using a fivefold cross-validation
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procedure. Twenty cases were randomly divided into five groups of the same size, whilst five
pairs of the CBCT and pCTr images per patient were not divided. One group was retained as test

data, and the remaining four groups were used for training. Each of the CBCT and pCTr images

had approximately 180 slices in all the 20 cases. We employed 16 training cases of five image
pairs per patient; and therefore, the total number of training slices was approximately 14400. If
the MAE of the test data was not updated more than 20 epochs while the MAE of the training
data kept falling, it was regarded as over-learning and the training was stopped. Finally, the
test CBCT images were fed into the trained DCNN model to obtain the improved CBCT (i-CBCT)
images.

Evaluation method

To evaluate the performance of the proposed method, the comparison to another existing
planning CT-based correction method (not in the projection domain but in the image domain)
[22] was made. The existing method has demonstrated great successes on enhancing CBCT
image qualities, and is considered as a benchmark method in clinical studies [27]. The corrected
CBCT by the existing method hereinafter referred to as “enhanced CBCT”.

In this study, pCTr was considered as ground truth, and image quality was evaluated on

selected slices in terms of spatial nonuniformity (SNU) and mean pixel values. SNU was defined
as follows [15]:

where   denotes a mean pixel value inside a square region of interest (ROI) with 10 by 10
pixels.  and  are the maximum and the minimum mean pixel values among five
square ROIs having 10 by 10 pixels, which were arbitrary positioned in the regions of the same
soft tissue area (fat or muscle) in distant locations. The pixel value consistency of the same soft
tissue in distant locations means the spatial uniformity of the entire image.

The mean pixel value among the five ROIs giving the maximum difference between pCT r and

original CBCT images (defined as ROIm) was also used as an index of image quality

improvement. For this evaluation, fat ROIs and muscle ROIs were used for patients 1-10 and
11-20, respectively. The root mean square differences (RMSD) of the SNU and the mean pixel
value of ROIm between pCTr and CBCT were calculated.

The peak-signal-to-noise-ratio (PSNR) was measured to capture the reduction of noise and the
structural similarity index measure (SSIM), which is one of the human visual system-based
metrics, and to evaluate different attributes such as luminance, contrast and structure
comprehensively. The PSNR and the SSIM of CBCTs were measured based on pCTr in the five

ROIs used in calculation of SNU for each patient and resulting five values were averaged.
Suppose  are CBCT images (original CBCT, enhanced CBCT and i-CBCT) and 
are pCTr images, we defined PSNR and SSIM as follows:

where , , .
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where , ,

,

,

,

where , , , , .

In order to highlight the differences of the images (pCT r, original CBCT, enhanced CBCT and i-

CBCT), differences between some images were calculated.

Results
Once the model had been trained, approximately 20 seconds were required to convert from 180
slices of a new patient CBCT data set to corresponding i-CBCT images. The axial, sagittal, and
coronal slices of eight patient cases are shown in Figures 3, 4. The quantitative analysis on the
axial slices is summarized in Table 1. As mentioned earlier, five ROIs were selected on the pCT r

for calculating the SNU of the pCTr, original CBCT, enhanced CBCT and i-CBCT. The RMSD of

the SNU between pCTr and CBCT for fat and muscle ROIs were reduced by the proposed method

from 109 to 13 HU and from 57 to 11 HU respectively, suggesting that the spatial uniformity of
CBCT was markedly improved to a level close to that of pCT. The RMSD of the SNU between
pCTr and enhanced CBCT for fat and muscle ROIs were 14 and 7 HU, respectively, suggesting

that the spatial uniformity of CBCT was improved to a level close to pCT to the same extent by
both the proposed method and the existing method. In addition, the RMSD of the mean pixel
values of ROIm between pCTr and CBCT for the fat and muscle ROIs were reduced by the

proposed method from 216 to 11 HU and from 247 to 14 HU, respectively, suggesting that the
pixel values of CBCT were improved substantially close to that of pCT. The RMSD of the mean
pixel values of ROIm between pCTr and enhanced CBCT for fat and muscle ROIs were 10 and 10

HU, respectively, suggesting that the pixel values of CBCT were improved close to pCT to the
same extent by both the proposed method and the existing method. The i-CBCTs are
significantly better than the enhanced CBCTs on the PSNR (p < 0.01) and the SSIM (p < 0.01),
suggesting that the noise reduction was performed more effectively and image quality become
closer to pCT by the proposed method than by the existing method.
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FIGURE 3: Comparison of the image qualities for
representative four cases (patient 1, 3, 4, 9).
For each patient, the images in the top, middle, and bottom row are axial, sagittal and coronal
views, respectively. Columns (a), (b), (c) and (d) are pCTr, original CBCT, enhanced CBCT and i-
CBCT, respectively. The yellow squares placed on the axial view of the column (a) were selected
ROIs for the SNU calculation. The ROIs were set on the fat region for each patient. Display window
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range was set to (-400, 100) HU for the original CBCT and (-300, 200) HU for the pCTr, the
enhanced CBCT and the i-CBCT.

pCTr: Registered planning computed tomography; original CBCT: Original cone beam computed
tomography; enhanced-CBCT: Enhanced cone beam computed tomography; i-CBCT: Improved
cone beam computed tomography; SNU: Spatial nonuniformity; ROI: Region of interest.

 

2018 Kida et al. Cureus 10(4): e2548. DOI 10.7759/cureus.2548 8 of 15



FIGURE 4: Comparison of  the image qualities for another four
cases (patient 11, 12, 14, 15).
For each patient, the images in the top, middle, and bottom row are axial, sagittal and coronal
views, respectively. Columns (a), (b), (c) and (d) are pCTr, original CBCT, enhanced CBCT and i-
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CBCT, respectively. The yellow squares placed on the axial view of the column (a) were selected
ROIs for the SNU calculation. The ROIs were set on the muscle region for each patient. Display
window range was set to (-400, 100) HU for the original CBCT and (-300, 200) HU for the pCTr, the
enhanced CBCT and the i-CBCT.

pCTr; Registered planning computed tomography; original CBCT: Original cone beam computed
tomography; enhanced-CBCT: Enhanced cone beam computed tomography; 

i-CBCT: Improved cone beam computed tomography; ROI: Region of interest; SNU: Spatial
nonuniformity.

 pCTr  original CBCT  enhanced CBCT  i-CBCT

 
SNU

(HU)

ROIm

(HU)
 

SNU

(HU)

ROIm

(HU)
PSNR SSIM

SNU

(HU)

ROIm

(HU)
PSNR SSIM

SNU

(HU)

ROIm

(HU)
PSNR SSIM

Patient

(Fat)
               

1 34 -118  135 -333 32.9 0.915 52 -132 48.5 0.930 54 -119 49.3 0.944

2 10 -106  94 -324 31.7 0.909 9 -109 49.5 0.937 5 -111 51.8 0.961

3 7 -100  69 -302 32.0 0.937 8 -102 50.5 0.954 20 -104 51.4 0.968

4 4 -103  160 -342 32.4 0.940 28 -103 50.1 0.959 24 -95 52.2 0.976

5 5 -110  91 -333 32.0 0.940 15 -118 51.0 0.960 19 -92 51.3 0.974

6 19 -114  131 -303 34.3 0.941 38 -121 49.5 0.955 29 -109 53.0 0.977

7 6 -121  194 -395 31.5 0.908 9 -119 48.1 0.912 18 -95 48.4 0.955

8 19 -100  88 -287 34.4 0.941 10 -101 48.8 0.945 23 -93 49.3 0.965

9 8 -120  103 -332 32.6 0.906 22 -137 47.7 0.922 24 -117 49.5 0.967

10 23 -120  89 -304 33.1 0.928 38 -140 49.3 0.944 17 -111 50.4 0.964

RMSD (Fat)    109 216   14 10   13 11   

Average

(Fat)
     32.7 0.926   49.3 0.942   50.6 0.965

Patient

(Muscle)
               

11 29 34  98 -219 29.9 0.930 19 35 50.1 0.953 22 46 52.2 0.974

12 14 53  62 -209 29.5 0.932 16 51 50.0 0.948 18 30 49.6 0.973

13 10 48  76 -200 29.4 0.942 17 37 51.4 0.965 30 29 52.8 0.977

14 19 47  43 -124 32.7 0.954 20 43 51.7 0.966 27 34 52.9 0.976

15 11 54  70 -185 30.5 0.940 22 31 49.3 0.955 30 33 51.8 0.977
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16 28 46  32 -163 30.7 0.943 18 43 50.9 0.962 16 53 52.1 0.974

17 16 41  112 -272 23.7 0.910 16 27 48.9 0.940 16 37 51.4 0.966

18 4 53  41 -194 29.2 0.937 3 51 50.6 0.957 9 38 49.4 0.975

19 24 40  99 -222 29.5 0.892 29 39 47.4 0.909 15 52 47.5 0.931

20 20 59  52 -183 30.0 0.917 30 47 48.6 0.934 13 54 52.7 0.971

RMSD

(Muscle)
   57 247   7 10   11 14   

Average

(Muscle)
     29.5 0.930   49.9 0.949   51.3 0.969

RMSD

(Total)
   87 232   11 10   12 13   

Average

(Total)
     31.1 0.928   49.6 0.945   50.9 0.967

TABLE 1: Quantitative analysis of the image qualities for all the 20 cases.
SNU is the difference between the maximum and the minimum mean pixel values among arbitrary positioned five square ROIs having
10-by-10 pixels. Under the column ROIm, the mean pixel value was shown, among the five ROIs, giving the maximum difference of the
mean pixel values between pCTr and original CBCT images (referred to as ROIm). Fat ROIs and muscle ROIs were used for patients
1-10 and 11-20, respectively. The RMSDs of the SNU and the mean pixel value of ROIm between pCTr and CBCT were calculated.
PSNR and SSIM of CBCTs were measured based on pCTr in the five ROIs used in calculation of SNU for each patient and resulting
five values were averaged.

pCTr: Registered planning computed tomography; original CBCT: Original cone beam computed tomography; enhanced CBCT:
Enhanced cone beam computed tomography; i-CBCT: Improved cone beam computed tomography; SNU: Spatial non-uniformity; ROI:
Region of interest; PSNR: Peak-signal-to-noise ratio; SSIM: Structural similarity index measure; RMSD: Root mean square differences.

The subtraction images to highlight the differences of pCT r minus original CBCT are shown in

Figure 5e, 5E, i-CBCT minus original CBCT are shown in Figure 5f, 5F, enhanced CBCT minus
original CBCT are shown in Figure 5g, 5G, pCTr minus i-CBCT are shown in Figure 5h, 5H and

pCTr minus enhanced CBCT are shown in Figure 5i, 5I. These differences in images shown in

Figure 5 were calculated in the regions where registration errors between the original CBCT and
the pCT were relatively large for patient 2 and 8. It was found that the structure difference of
the rectum was clearly observed in Figure 5e, 5h but not in Figure 5f for the patient 2 and that
of the bladder was clearly observed in Figure 5E, 5H but not in Figure 5F for the patient 8. This
suggests that the proposed method successfully suppressed false structures from the pCTr to

appear on the i-CBCT. However, some structures (e.g., small intestines and right gluteus
maximus muscle) on the original CBCT slice tended to be deformed or disappear on the
corresponding i-CBCT slice in both cases.
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FIGURE 5: Comparison among original CBCT, pCTr, i-CBCT
and enhanced CBCT for patient 2 and 8.
(a), (b), (c) and (d) are original CBCT, pCTr, i-CBCT and enhanced CBCT, respectively; (e) pCTr

minus original CBCT; (f) i-CBCT minus original CBCT; (g) enhanced CBCT minus original CBCT; (h)
pCTr minus i-CBCT; (i) pCTr minus enhanced CBCT for patient 2. (A) to (I) are for patient 8.

original CBCT: Original cone beam computed tomography; pCTr; Registered planning computed
tomography; i-CBCT: Improved cone beam computed tomography; enhanced-CBCT: Enhanced
cone beam computed tomography.

Discussion
A major advantage of the DCNN method may be the fast computation time. The training for the
deep learning required a day, but once learning is done, i-CBCT was generated approximately
in 20 seconds per patient using GPU. It is expected that the accuracy of the DCNN method will
be further improved by using more training data. Although training time increases with larger
training data, the size of the final model and the speed of processing a new test image will not
be increased.

Table 1 showed that the RMSD of the SNU between the pCT r and the original CBCT highly
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differed between fat (109) and muscle (57) HU. A possible interpretation may be that the
proportion of fat near the body surface is greater than that of muscle, so the shading artifacts
are more strongly observed in the fat region. In contrast, little differences were observed in the
RMSD of the SNU between fat (13) and muscle (11) HU, and the RMSD of the mean pixel values
of the ROIm between fat (11) and muscle (14) HU for the i-CBCT. These findings may suggest

that the spatial uniformity and the pixel values of the CBCT images were improved close to
those of pCT regardless of the position and the anatomical structures on the CBCT images.
Improvement of the PSNR and the SSIM on the enhanced CBCT than the original CBCT may be
mainly due to the improvement of spatial uniformity and pixel value. On the other hand,
improvement of the PSNR and the SSIM on the i-CBCT than the enhanced CBCT may be mainly
due to the suppression of high-frequency artifact such as streaks.

Since pCT and CBCT images are typically acquired several days or weeks apart, differences in
anatomical structure are often observed. We noticed that there was some residue deformation
in the pairs of pCTr and CBCT even after DIR, which might be due to the poor image quality of

CBCT thus leading to inaccuracy of DIR. The registration errors of the training data may cause
inaccuracy of the model since it may be trained to make false image predictions. The proposed
method successfully suppressed false structures from the pCTr to appear on the i-CBCT, even

where the registration errors between CBCT and pCT were large. However, deformation and
elimination of some structures (e.g., small intestines) were seen on the corresponding i-CBCT
slice for some cases as shown in Figure 5, which may result in the registration error in IGRT.
One potential approach to better preserve the anatomical structures on CBCT may be to
improve the CBCT/pCT alignment of the training data (e.g., hybrid DIR [28]). Our future study
will demonstrate the correlation between the alignment of the training data and the
performance of the network to preserve the anatomical structures on CBCT. In addition,
increasing learning data sequentially to construct a highly generalized network may also
contribute to preserve the anatomical structures on CBCT.

In the proposed DCNN model, a 2D CBCT slice and a corresponding 2D pCT r slice were used for

learning. Employing multiple pairs of adjacent slices as input and output images in the model
may be effective for making more accurate mapping from CBCT to corresponding pCTr.

Alternatively, DCNN models can be trained in three different ways where the axial, sagittal or
coronal slices of the 3D volume are separately used; subsequently, the three results may be
averaged to produce final 3D i-CBCT. The evaluation of these extended approaches will be our
future work.

All the training data used for learning the DCNN model in this study were obtained from a
single pair of pCT and CBCT scanners. A DCNN model trained by a single-scanner training data
may not be applicable to a test data acquired from a different scanner. In order to solve this
issue, it may be necessary to standardize the CBCT images by preprocessing such as histogram-
matching [29].

Conclusions
We have developed a DCNN method for producing high-quality CBCT. The proposed method
may be directly applied to the CBCT images acquired from a commercial CBCT scanner with
high computational efficiency, allowing easy handling of large training data without sacrificing
the speed of processing test data. Future work includes better preservation of the anatomical
structures of CBCT during the improvement process, correlation between alignment of the
training data and the performance of the network and further evaluation of the proposed
method on larger data sets including other anatomical regions.
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