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Abstract
Epilepsy is a devastating disorder that affects millions of people worldwide. One of the most
common types of epilepsy, temporal lobe epilepsy (TLE), is associated with significant
morbidity in cognitive and psychosocial dysfunction. TLE has long been correlated with a
history of prolonged febrile seizures in childhood; hence, understanding the consequences of
prolonged febrile seizures on TLE is of considerable clinical significance. The Baram Laboratory
has consistently observed down-regulation after seizures of the hyperpolarization-activated
cyclic-nucleotide gated 1 (HCN1) channels that are responsible for mediating
hyperpolarization-activated (Ih) currents. In the hippocampus, these currents regulate the
resting membrane potential, shape rhythmic and synchronized neuronal activity, and regulate
the temporal summation of dendritic depolarization. This study targets the factors responsible
for regulating the transcription of the HCN1 gene. By using chromatin immunoprecipitation
(ChIP), polymerase chain reaction (PCR), and DNA electrophoresis, we show that the neuron
restrictive silencer factor (NRSF) binds to the NRSE region in the first intron of the HCN1 gene.
NRSF, in conjunction with its cofactors, deacetylates and methylates the chromatin, preventing
transcription of the HCN1 gene. Such biochemical change may produce neuronal injury to the
developing brain, promoting the onset of epilepsy.
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Introduction
Febrile seizures are convulsions that are caused by fever exceeding 102 °F (39 °C) in children up
to five years of age. Although they are mostly harmless due to their short durations and small
number of reoccurrences, there is a small percentage of complex febrile seizures-prolonged and
reoccurring seizures-that may cause a number of significant changes to occur in an infant
brain. Many correlation studies have established a relationship between individuals who have
experienced complex febrile seizures and temporal lobe epilepsy (TLE), one of the most
common types of epilepsy. Nevertheless, according to Brewster, et al., 2000, "the direct causal
relationship of prolonged febrile seizures to this common epilepsy, and the mechanisms by
which these early life seizures might be proepileptogenic, have not been resolved" [1]. Although
much remains unknown, a study using a rat model demonstrated functional changes in the
hippocampus after complex febrile seizures [2].

Whole-cell patch clamp recordings from the hippocampal CA-1 pyramidal cells have
demonstrated an alteration in the biophysical properties of the Ih current by experimental
febrile seizures [3]. The Ih current is mediated by the hyperpolarization-activated cyclic
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nucleotide-gated (HCN) channels, some of the most important regulatory proteins in the
hippocampus [4]. Out of the four isoforms, HCN1 channels are dominant in hippocampal
pyramidal cells and CA1 interneurons under normal conditions [5-6]. The Baram laboratory
previously observed a reduction in HCN1 levels after febrile seizures [1], and the main objective
of our study is to present the reason behind such a decrease in HCN1 expression.

Many neuronal and non-neuronal genes contain a DNA sequence element, known as the
neuron restrictive silencer element (NRSE). The neuron restrictive silencer factor (NRSF) binds
to the NRSE sequence and represses neuronal gene transcription [7]. Since the HCN1 gene
contains an NRSE sequence in its first intron, we hypothesized that the reduction of the
number of HCN1 channels might be due to the binding of the NRSF to the NRSE region in the
HCN1 gene, preventing it from being transcribed. A rodent model was employed because the
NRSE sequence in the HCN1 gene and the structure of the NRSF gene are conserved in humans,
mice, and rats [8], as shown in Figure 1.

FIGURE 1: HCN1 Gene Contains a Conserved NRSE
HCN1 Gene Contains a Conserved NRSE (McClelland, et al., 2008)

Aside from the NRSE consensus sequence (the series of nucleotides most frequently found at
each position within a region of DNA), the model is constructed to match the stage of brain
development at 18 months [10], when an infant brain is most susceptible to experiencing
febrile seizures. An 18-month human brain is equivalent in its extent of maturation to a brain
of a postnatal 10 (P10) rat [11]. The pups are injected with kainic acid, a seizure-inducing
neurotoxin, to induce status epilepticus [1]. Forty-eight hours after injection, their hippocampi
are resected to analyze NRSF binding. For the HCN1 gene to be expressed, the tightly packed
DNA must be unwound to allow the cell's transcription machinery to transfer the genetic
information from DNA in the form of messenger RNA, which is subsequently used in
manufacturing the HCN1 channel. However, by binding to the NRSE region in the first intron of
the HCN1 gene, NRSF allows subsequent recruitment of its cofactors that stimulate the
methylation (chemical modification via attachment of CH3 groups) of the nearby histones
(DNA-packaging proteins), preventing them from unwinding to allow DNA transcription, as
illustrated in Figure 2. This phenomenon is observed directly through chromatin
immunoprecipitations (ChM) by targeting the NRSF binding factors believed to be involved in
the repression of the HCN1 expression. Thus, dimethyl histone and NRSF antibodies are used
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to immunoprecipitate DNA to which the modified histone or NRSF has bound, respectively. At
the completion of ChIP, the extracted DNA from the control and seizure-induced hippocampi is
replicated using polymerase chain reaction (PCR) with specific primers for the HCN1 gene and
the actin gene. Mainly used for comparison purposes because it does not contain an NRSE
sequence, the actin gene is highly conserved across species, common, and highly expressed.
Since NRSF is overexpressed after seizures, it is expected that the quantity of the recovered
DNA will be higher in rats injected with kainic acid, a convulsant, than those that were not
injected due to increased NRSF binding to the HCN1 gene in rats that have experienced
seizures.

FIGURE 2: NRSF Binding Mechanism
NRSF Binding Mechanism (McClelland, et al., 2008)

Materials And Methods
All experiments were carried out in accordance with the Institutional Animal Care and Use
Committee at the University of California, Irvine and were consistent with federal guidelines.
Charles-River delivered pregnant rats (Embryonic 16) that each gave birth to a litter of 8-10
pups four to five days later (Embryonic 20-21). Different litters were divided into littermate
pairs in which one animal was assigned to the control group, while the other was placed into
the experimental group. The pups were allowed to mature to 10 days (P10) before the
experimental group was injected with kainic acid, a seizure-inducing toxin. Forty-eight hours
after the injection, the hippocampi of each littermate set were resected and stored at -80° C.

Chromatin immunoprecipitation
To avoid degradation and other undesirable reactions, all of the samples and their additives
were kept on ice.
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Day 1: Frozen hippocampi were fixed by adding 1mL of cold 1% paraformaldehyde (PFA) (Sigma
Aldrich; prepared by dissolving 0.05 g of powdered PFA in 5mL of PBS and rotating for at least
120 min) in phosphate buffered saline (PBS; 10x stock: 2.28 g monobasic NaH2PO4, 11.5g
dibasic Na2HPO4, and 43.84g NaC1 dissolved in 450mL deionized water, adjusted pH to 7.4
with 1 M HC1, and brought the volume to 500 mL with water; diluted to 1x before use) and
incubating for five minutes on a rotator at 4° C. The samples were then spun at 1000 rpm for
five minutes, the supernatant was discarded, and the hippocampi were washed twice with an
inhibitor solution of 20 µL of 50xPIC (Protease Inhibitor Cocktail; Roche; pellet diluted in
deionized water) in 1 mL of 0.125 M glycine in PBS O.T. Baker).

The hippocampi were then lysed with 360 µL of radio immuno precipitation assay (RIPA) lysis
buffer (prepared by mixing 0.15 M NaC1, 5Mm Ethylenediamine Tetraacetic Acid (EDTA)/pH 8,
1% Triton x100, and 10 m.M Trizma hydrochloride/pH 7.4 all from Boston Bioproducts; just
before using, added: 1:1000 5 M DTT, 1:1000 100 mM PMSF in isopropanol, and 1:1000 5 M
aminocaproic acid) and 8 µL of 50xPIC and sonicated at 20% for 20 sec (1 sec on/5 sec off) with
a Branson Digital Sonifier 450 (VWR Scientific). Immediately after sonication, 20 µL of 50xPIC
(Protease Inhibitor Cocktail) was added and the broken hippocampi centrifuged at 13.2 krpm
for five minutes and 350 µL of the supernatant transferred to new tubes. After adding 1 mL of
RIPA (Radio Immuno Precipitation Assay) lysis buffer, 425 µL of the supernatant was relocated
to new tubes. To target the factors responsible for the decrease of the HCN1 channels, either
dimethyl histone antibody (3p.g), immunoglobulin G (IgG) antibody (3 p.g), or H290 NRSF
antibody (3 p.g) was added to each sample. IgG served as a negative control that does not bind
to any proteins and was used to immunoprecipitate non-specific DNA.

Day 2: Thirty µL of Protein G Agarose Beads/Salmon Sperm DNA (Upstate/Millipore) were
obtained per immunoprecipitation (IP) sample distributed in new 1.6 mL tubes. The Protein G
Agarose Beads were spun at 6000 rpm for 30 seconds, and the supernatant was aspirated.
Initially, the beads were washed three times by adding 1 mL of RIPA (Radio Immuno
Precipitation Assay) lysis buffer, spinning the tube at 6000 rpm for 30 seconds, and aspirating
the supernatant. At the end of the last wash, 1 mL of RIPA lysis buffer was added to the washed
Protein G Agarose Beads and 90µL was distributed into new tubes. Meanwhile, the IP samples
were spun at 13.2 krpm for 10 min and 360 pLL of the supernatant transferred to the washed
Protein G Agarose Beads. The samples incubated on a rotator for 60 min at 4° C. After
incubation, they were centrifuged at 6000 rpm for one minute, and the supernatant removed,
followed by five washes. During each wash, 1 mL of RIPA lysis buffer was added, the samples
were incubated at 4° C for 5 min, spun at 6000 rpm for one minute, and the supernatant was
discarded.

The DNA was purified by adding 65 µL of 20% Chelex 100 (made in deionized water; Bio-Rad) to
each sample, vortexing the samples for five seconds and locking them with clasps before
incubating them in a boiling water bath for 10 minutes. The inputs (additional leftovers of
DNA) underwent the same procedure but received only 10 µL of 20% Chelex. Finally, the
samples were centrifuged at 13.2 krpm for one minute at 4° C and 35 µL of the supernatant was
transferred into new 0.6 mL tubes for storage at -80° C.

Polymerase chain reaction
To equilibrate the quantity of DNA in the subsequent samples, the DNA from the inputs was
amplified and quantified using the PCR and then separated in DNA electrophoresis. The
samples were prepared by mixing nucleotide free water (Promega; volume varied with respect
to concentration), 1 µL of Primers (Forward primer in the first intron of the HCN1 gene:
AGGGAGCTGTCCACAGTTCTGAAT/ Reverse primer in the 1st intron of the HCN1 gene:
AGATGGACGGTCATCAAACC; Forward primer in the 3rd exon of the actin gene:
GACTACCTCATGAAGATCCTGACC/Reverse primer in the 3rd exon of the actin gene:
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GAGACTACAACTTACC CAGGAAGG) at a 2:1:1 ratio-actin (0.625 p.M), HCN1 (0.3125 p.M), DNA
template (volume varied with respect to concentration), and 10 µL of Gotaq Green Master Mix
(Promega), in that order. The total volume of all samples was 20 µL. The samples were placed
into the Eppendorf Mastercycler Gradient-Thermocycler for 33-36 cycles. The number of cycles
was determined by trial and error to obtain clear, differentiable bands for analysis.

DNA electrophoresis
DNA electrophoresis was done with a 3% large gel, prepared by dissolving 2.1 g of Agarose
(Apex) in 70 mL of TAE buffer (50x stock: 242 g Tris base (Sigma) in 750 mL deionized water,
57.1 mL Acetic Acid (Fisher Biotech), 100 mL of 0.5M Ethylenediamine Tetraacetic Acid
(EDTA/pH 8.0; Boston Bioproducts), diluted to 1x before use), and adding 40 µL of Ethidium
Bromide. The mixture was microwaved at 20-, 15-, and 6-second intervals for a total of
approximately 91 seconds to obtain a clear, viscous solution free of air bubbles that might
disrupt the clear visualization of the gel. At the completion of the PCR, the samples (15 µL) and
Bioline Hyperladder I (5 µL and 2.5 µL in the first and last wells; Bioline) were loaded into their
appropriate wells, and the gel was run for 5 min at 157V and 1 hour at 125V.

The gel was visualized under UV light at 302nm and photographed with a digital camera. The
image was reproduced in P.S. Remote (version 1.5.8) and saved for further analysis with Image J
(Image Processing and Analysis in Java). After outlining the bands and Hyperladder I, the
program produced peaks that corresponded to the bands seen on the gel. Greater band intensity
indicated more of the immuno-precipitated DNA and larger peak areas. For comparison
purposes, an optimal linear range was obtained by running the PCR of the recovered DNA using
different DNA concentrations and reaction cycle numbers. Moreover, duplicates of each DNA
amount and reaction number were performed. A quantitative DNA ladder was used in DNA
electrophoresis to produce a standard curve of band intensities vs. DNA amounts. From each
littermate pair, the quantities of the recovered DNA of the targeted genes in the kainate-
induced rats were divided by the amount of recovered DNA from the control rats to yield ratios,
indicating the change in binding to the HCN1 and actin gene.

Results
The use of ChIP, PCR, and DNA electrophoresis permitted a direct observation of the neuronal
changes in the developing brain that are experienced after seizure. Analyses of the gels after
DNA electrophoresis have revealed bands with higher intensity, indicating higher DNA
concentrations in rats injected with kainic acid than those that were not. The ratios comparing
binding to the HCN1 and actin gene are shown for ChIP assays performed with an NRSF
antibody and dimethylated histone antibody. A higher amount of recovered DNA implies higher
antibody binding during ChIP, which indicates greater NRSF binding to the gene in rats injected
with kainic acid. When NRSF binds to the first intron of the HCN1 gene, it blocks access for the
cellular transcription machinery to produce the primary mRNA for the HCN1 protein. Overall,
normal HCN1 expression exists before seizures. However, NRSF levels are upregulated after
kainic acid-induced seizures [12], leading to increased NRSF binding to the HCN1-NRSE region.
This changes chromatin reception to transcription and lowers HCN1 expression, as seen in
Figure 3. Moreover, binding of NRSF to the NRSE region promotes methylation of the histones
around the gene itself. Chromatin is more receptive to transcription in the acetylated form than
in the methylated form due to the tight packing of the histones in the methylated state.
Therefore, transcription of the HCN1 gene is repressed (Figure 4).
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FIGURE 3: Data Visualizations
Higher DNA recovery with NRSF antibody in kainate-induced-seizure rats than in control rats for
HCN1 but no difference for Actin.

FIGURE 4: Data Visualizations
The HCN1 gene environment is more methylated after kainic acid.

Discussion
This study demonstrates that HCN1 expression is repressed after seizures due to the binding of
the NRSE. In a ChIP assay using the NRSF antibody, the seizure/control ratio of 1 in actin
implies no difference in the level of expression of the actin protein in either seizure-induced or
control rats. However, a higher than 1 HCN1 ratio is indicative of higher immunoprecipitation
of DNA due to higher NRSF binding to the NRSE region in the HCN1 gene in seizure-induced
rats than in control rats. Hence, HCN1 channels are downregulated in seizure-induced rats. On
the other hand, the ChIP assay using a dimethylated histone antibody has a higher HCN1 ratio,
indicating increased methylation of histones near the HCN1 gene in that suppress its
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expression versus control rats. The actin ratio is lower than the HCN1 ratio because of lower
deviation in actin expression in seizure-induced rats compared to control rats. However, the
actin ratio of above one is due to the regulation of its expressivity by external factors not
addressed in this study. Such observations serve as significant discoveries in understanding the
mechanism of epileptogenesis.

While the animal model is a good approximation of human infant seizures, it holds a
significant bias in attempting to simulate human conditions. Neuronal changes observed in a
homogeneous rodent population cannot be applied to humans because the human population is
very far from being characterized as homogeneous. Dr. Celine M. Dube, et al. furthers this issue
by stating the following:

"Whether epileptogenic processes occurring in the immature rodent brain are analogous
directly to those in children remain largely unknown......[However], this issue will be resolved
by interventional studies using molecular targets discovered in the animal model and by aiming
to prevent human epileptogenesis" [13].

Conclusions
Molecular research such as this holds great potential for understanding the mechanisms of
epilepsy development, which may inspire design of future preventative and interventional
approaches. Although HCN1 levels are reduced with respect to the increased NRSF levels after
seizures, we are currently monitoring the persistence of these changes at various time intervals
after the seizure. Moreover, a possible prevention method is being tested that aims to reduce
NRSF binding after seizures with the use of decoy oligonucleotides, short DNA sequences of the
NRSE.
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