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Abstract
Meningiomas are among the most common primary tumors of the central nervous system. We
describe the case of an 82-year-old woman with meningioma, the epicenter of which was above
the sella, causing her terrible headaches and severely compromised visual acuity. Although the
patient was eligible for stereotactic radiosurgical treatment (SRS), she was treated with
conventional 3D conformal radiotherapy (3DCRT), at her will. We discuss alternative and
innovative approaches regarding non-chemotherapy drugs, with concurrent radiation
treatment.
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Introduction
Most meningiomas are benign tumors and only a small fraction is atypical or even malignant.
Histological type does not correlate always to prognosis since the location of the tumor and the
compression phenomena can cause serious morbidity or mortality. Patients bearing tumors
sized under 3.5 cm, especially when they are adjacent to sensitive brain structures, are
candidates for stereotactic radiosurgery (SRS). The current practice is the simultaneous use of
corticosteroids in order to reduce peritumoral edema concerning brain tumors during radiation
treatment.

Case Presentation
An 82-year-old woman with severe headaches and progressive visual loss for one year's
duration was diagnosed with meningioma (Figures 1-3), encompassing the optic chiasm and
compressing the pituitary gland, with a maximal diameter of 3.2 cm. Due to its location, the
tumor was considered inoperable, and although she was eligible for SRS, 3D conformal
radiation treatment was scheduled.
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FIGURE 1: Sagittal T1, prior RT
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FIGURE 2: Axial T1 Flair, showing edema, prior RT
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FIGURE 3: Axial T1, prior RT

Due to the patient's past medical history (mild arthritis), she had been treated with
prednisolone 7.5 mg qd for two years. Since her meningioma diagnosis, three months ago, her
steroid medication was increased to 16 mg of methylprednisolone qd a.m., which she continued
to take until the initiation of her radiation treatment. Due to the protracted steroid treatment,
she acquired cushingoid characteristics which worsened with the steroid dose increment.

Radiation therapy started in March 2011. The patient received 54 Gy in 2 Gy fractions five days
a week. Beginning the day of her irradiation treatment, she also began taking acetazolamide
250 mg qd, valproic acid 500 mg bid, and cimetidine 400 mg bid. Prednisolone 5 mg qd was also
prescribed due to the assumption that her hypothalamus-pituitary-adrenal axis was
suppressed.

Ten days after the initiation of her RT treatment, the patient mentioned that her headaches
completely disappeared and her vision improved. Upon completion of her treatment, the
patient noted improvement in her visual acuity and her cushingoid features were significantly
less prominent.

We ordered a new brain MRI 10 days after the completion of the patient's 3DCRT, which
revealed negligible edema (Figures 4-6) in accord to the patient's subjective improvement. We
scheduled a new MRI imaging of the brain in three months period, in order to evaluate the
tumor size and characterics. Since the patient had experienced no adverse effects whatsoever
clinically and biochemically, she was advised to continue the same drug regimen until her next
imaging study.    
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FIGURE 4: Sagittal T1, 10 days after RT

FIGURE 5: Axial T1 Flair, showing edema, 10 days after RT
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FIGURE 6: Axial T1, 10 days after RT

Discussion
Prescribing steroids in order to minimize peritumoral edema, especially during radiation
treatment of brain tumors located near sensitive structures, has been a common practice.
Although their efficacy is well-established, they produce multiple side-effects and have a
profound negative influence on cytokine release and immune cell function. The immune
system, as a whole, plays an integral role in destroying cancer cells and perhaps is the key
element of the radiation treatment abscopal effect and an important factor in the bystander
effect [1].

Recently, alternative steroid sparing agents have been utilized in order to reduce brain tumor
edema, such as boswellic acids which act as 5-lipoxygenase (5-LOX) inhibitors, with quite
satisfying results [2]. The blockage of arachidonic acid (ARA) cascade could minimize radiation
treatment adverse reactions through reduction of pro-inflammatory eicosanoids and could
possibly also enhance therapeutic results. Upregulation of intracellular unesterified ARA could
accentuate both pathways of apoptosis, extrinsic and intrinsic [3-9].

There are three arachidonic acid depleting enzyme classes: cyclooxygenases (COX-1 and COX-
2), lipoxygenases (5-LOX, 12-LOX, and 15-LOX), and cytochrome P450 (CYP450). Inhibition of
each one of them raises intracellular ARA levels, although combined inhibition could provide
the most profound results [10]. Corticosteroids prevent the release of ARA from cancer cells via
inhibition of cytosolic phospholipase A2 (cPLA2), an action which results in less available pro-
inflammatory mediators, but also in less intracellular ARA. There is evidence that in some
cases corticosteroids are counter-productive when they are used in combination treatments
[11-12].

Cimetidine is a competent CYP450 inhibitor, and valproic acid downregulates both COX2
isoenzyme and long-chain acyl-CoA synthetase [13-14], thus boosting intracellular ARA levels.
An addition to its effect on ARA cascade is the ability to inhibit histone deacetylase (HDAC)
[15-17]; studies regarding its therapeutic potential in cancer are either completed or underway.

Acetazolamide, an inhibitor of all carbonic anhydrase (CA) isoenzymes and aquaporin-4 [18],
could contribute as an add-on treatment for edema alleviation. Interestingly enough, CA
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inhibitors demonstrate anti-cancer activity [19-20], because tumors rely on carbonic
anhydrases (especially isoenzymes IX, XII, IV) in order to survive the acidic environment they
create and sustain. Another aspect of the indiscriminate CA inhibition is the effect on the
mitochondrial CA Va and CA Vb, which could result in less lipogenesis [21] of the cancer cells
due to the diminished action of pyruvate carboxylase.  De novo lipogenesis protects cancer cells
from free radicals, minimizing membrane polyunsaturated fatty acids (PUFAS) [22]. Blocking
CA activity could enhance known therapeutic modalities. 

Conclusions
Non-toxic treatments utilizing a multi-angled approach can enhance local radiotherapy effects,
leaving healthy tissues largely unharmed. It is also conceivable that the propagation
of apoptotic and necrotic death of cancer cells can, even without immunoparetic interventions,
promote unanticipated benefits, such as the abscopal effect. 
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