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Abstract
To identify factors associated with the development of hyperkalemia in patients with chronic
kidney disease (CKD), we analyzed conditions present during episodes of hyperkalemia in two
patients with insulin-dependent diabetes mellitus who had elevated serum potassium
concentration ([K]) in ≥ 20% of the blood samples during both the pre-hemodialysis and the
hemodialysis period.  In both patients, conditions causing derangements in the internal
potassium balance (exchanges of potassium between the intracellular and the extracellular
compartment), including severe hyperglycemia (serum glucose concentration ≥ 400 mg/dL) and
catabolic illnesses, were present in ≥ 75% of the instances of simple hyperkalemia ([K] ≥ 5.1
mmol/L) and almost all of the instances of severe hyperkalemia ([K] ≥ 6.0 mmol/L) during both
the pre-hemodialysis and the hemodialysis periods.   Derangements of the internal potassium
balance, many of which are potentially preventable, can be a major cause of hyperkalemia in
patients with CKD before or after starting chronic hemodialysis.  Careful analysis of the
conditions associated with and potentially causing hyperkalemia in CKD patients is imperative
for both treatment and prevention purposes.

Categories: Endocrinology/Diabetes/Metabolism, Internal Medicine
Keywords: hyperkalemia, hyperglycemia, catabolic illness, chronic kidney disease, hemodialysis,
diabetes mellitus

Introduction
Hyperkalemia, even at modest levels, is associated with adverse outcomes, including shortened
survival, in the general population [1]. Evaluation of the pathogenetic mechanism(s) of each
episode of hyperkalemia is required for both treatment and prevention. The concentration of
potassium in serum ([K]) is determined by the interplay of two balances, the external balance
(intake and output of potassium) and the internal balance (potassium exchanges between the
intracellular and extracellular compartments). Either or both mechanisms may be at fault in
each episode of hyperkalemia [2].

The frequency of hyperkalemia is high in patients with chronic kidney disease (CKD) [3] and
even higher in those on chronic hemodialysis [4]. Defects in both the external and internal
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potassium balance have been documented in CKD. Patients with CKD have limited capacity to
excrete potassium loads [5]. Advanced CKD leads also to defective uptake of potassium by cells
as a consequence of uremia [6]. We present two patients with insulin-dependent diabetes
mellitus and CKD who had a high frequency of hyperkalemia (in ≥ 20% of the serum samples) in
both the pre-hemodialysis (pre-HD) and the hemodialysis (HD) periods. The purpose of this
report was to investigate mechanisms of hyperkalemia in these patients and to compare the
pre-HD and HD periods.

Case Presentation
Patients
Both patients were men with insulin-dependent diabetes mellitus. Table 1 shows age at
initiation of dialysis, duration of follow-up pre-HD and during the HD period, and annual
hospitalization rates, plus average days of hospitalization per annum. The table also shows the
95% confidence interval (CI) of the corresponding values for a control group comprised of all
other diabetic men treated in the same dialysis unit over the same period [7]. The control group
was used only for comparison of morbidity with the two patients presented. Hospitalization was
used as the measure of morbidity. The ages of the two patients at initiation of hemodialysis and
the duration of follow-up in the pre-HD and HD periods were within the corresponding 95% CIs
of the control group. The rates and lengths of hospitalizations exceeded the corresponding
upper limits of the 95% CIs intervals of the control group in both the pre-HD and HD periods in
both patients.

 Patient 1 Patient 2 Controls*

Age at HD initiation, years 56.1 51.1 65.2 (45.4-85.0)

Pre-HD follow-up period, years 3.83 8.42 5.42 (0-10.84)

HD follow-up period, years 1.90 3.75 2.55 (0-5.10)

Hospitalization rate, pre-HD period, n/yr 5.48 0.83 0.62 (0.53-0.71)

Hospitalization rate, HD period, n/yr 6.32 5.33 2.42 (2.16-2.68)

Hospital days per year, pre-HD period 38.1 9.6 5.2 (4.1-6.3)

Hospital days per year, HD period 45.8 38.7 32.5 (26.2-33.8)

TABLE 1: Ages and hospitalizations
HD = hemodialysis. * 232 hemodialysis patients with diabetes mellitus [7]. The numbers in the Controls column show mean (95%
Confidence Interval)

The course of both patients during the pre-HD and HD periods was characterized by repeated
episodes of severe hyperglycemia and episodes of catabolic illness. In the first patient,
catabolic illnesses included left leg gangrene leading to high below-the-knee amputation with
prolonged postoperative sepsis, sepsis secondary to an infected dialysis catheter, and sepsis
associated with severe pneumonia.  The second patient had repeated episodes of deep
abscesses secondary to self-injection of illegal drugs, large muscle hematoma secondary to
trauma, infectious endocarditis, and right femoral neck fracture with operative
correction. Patient 1 died suddenly at home.  Patient 2 expired two months after the repair of
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the right hip fracture after withdrawing all treatments.

Methods
The following additional information was collected for each patient in both the pre-HD and HD
periods: (a) Medications that affect internal or external potassium balance, including insulin,
angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), β2-

adrenergic blocking agents, potassium salts, diuretics, sodium polystyrene sulfonate, and β2-

adrenergic agonists; (b) presence or absence of catabolic illness at the time of each blood
sampling; (c) serum chemistries, including glucose, sodium, potassium, chloride, total carbon
dioxide ([TCO2]), urea nitrogen (SUN) and creatinine concentrations, and arterial blood gases;

(d) whether the laboratory tests were collected in an outpatient setting or during
hospitalization, whether episodes of hyperglycemia were associated with ketoacidosis, and
whether laboratory tests obtained after a test showing severe hyperglycemia were collected
during treatment of this hyperglycemic episode with continuous insulin infusion. [K] ≥ 5.1
mmol/L was considered hyperkalemia, while [K] ≥ 6.0 mmol/L was considered severe
hyperkalemia [3].  Finally, the following derived parameters were calculated:

Serum tonicity (effective osmolarity) = 2x[Na] + [Glu]/18, where tonicity is in mOsm/L, glucose
concentration ([Glu])is in mg/dL, and [Na] is serum sodium concentration [8].

Serum osmolarity = Tonicity + [Urea], where [Urea] is serum urea concentration calculated as
SUN/2.8 [8].

[Na] was corrected to a serum glucose level of 100 mg/dL [9-10]. Corrected serum sodium values
([Na]Corr) were calculated for all serum samples as follows: [Na]Corr = [Na] + 1.6x([Glu] –

100)/100                                                                         

Serum anion gap in mEq/L = [Na] – ([Cl] + [TCO 2]), where [Cl] is the serum chloride

concentration.

Statistical methods
Continuous variables are presented as mean ± standard deviation. Initial statistical analysis
addressed the pre-HD and HD periods combined. The relationship between parametric
variables and [K] was evaluated by correlational analysis. For categorical variables, [K] values
obtained while the variable was present were compared by unpaired student's t-test to [K]
values obtained when the variable was absent. Hyperglycemia and the presence of catabolic
illness were the two most prominent conditions associated with hyperkalemia in both
patients. [Glu] levels ≥ 400 mg/dL are reported as critical by the laboratory of this hospital and
were considered "severe" hyperglycemia for this report. Serum samples with [Glu] < 400 mg/dL
obtained in periods when catabolic illness was absent were labeled as control samples. In the
pre-HD and HD periods separately, [K] levels were compared between hyperglycemic and
control samples in two ways: In the first comparison, the control sample (Control 1) was the
closest control sample preceding or following the hyperglycemic sample. The comparison was
performed by paired t-tests. In the second comparison, all control samples (Control 2) were
compared to the hyperglycemic samples by unpaired student's t-tests. For these comparisons,
serum samples obtained during treatment of a hyperglycemic episode with continuous insulin
infusion were excluded from both the hyperglycemic and control categories. [K] values in serum
samples without hyperglycemia obtained during catabolic illness activity were compared to [K]
values in control samples (Control 2 above) by unpaired student's t-tests.
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Linear regression of [K] on [Glu] was performed separately in the pre-HD and HD periods. The
samples analyzed in the regressions included all control samples and hyperglycemic samples,
with three exceptions: Serum samples obtained during episodes of ketoacidosis, during
treatment of hyperglycemia with continuous insulin infusion, and during episodes of catabolic
illness were excluded from this statistical analysis.

Stepwise, multiple linear regression was performed in each patient to identify predictors of
[K]. A forward and backward stepping procedure was used with a P-value < 0.05 to enter and >
0.05 to remove a variable. The candidate variables included the period of observation (pre-HD
vs. HD), the presence or absence of ketoacidosis, whether the blood sample was obtained
during hospitalization or on an outpatient basis, whether the blood test was obtained during
continuous infusion of insulin during treatment of severe hyperglycemia, presence or absence
of catabolic illness, intake of drugs affecting potassium balance, and parametric variables, such
as [Glu], SUN, tonicity, and [Na]Corr. All serum samples were included in this analysis.

Results
The first patient had, during the pre-HD period, 223 measurements of serum
chemistries. Seventy-nine of these measurements (35.3%) exhibited hyperkalemia ([K] range
5.1-9.1 mmol/L) and 19 measurements (8.5%) exhibited severe hyperkalemia. Among 170
measurements during the HD period in the same patient, 50 (29.4%) exhibited hyperkalemia
([K] range 5.1-8.8 mmol/L) and 14 (8.2%) exhibited severe hyperkalemia. The second patient
had 100 measurements in the pre-HD period. Twenty of these measurements (20.0%) exhibited
hyperkalemia ([K] range 5.1-7.2 mmol/L) and three measurements (3.0%) exhibited severe
hyperkalemia.  Among 213 measurements in the same patient during the HD period, 63 (29.6%)
exhibited hyperkalemia ([K] range 5.1-7.5 mmol/L) and 19 (8.9%) exhibited severe
hyperkalemia.

When all serum samples obtained in the pre-HD and HD periods were analyzed together, [K]
values correlated with the following parameters in the first patient: [Glu] (r = 0.846), [Na] (r = -
0.722), tonicity (r = 0.810), osmolarity (r = 0.801), [Cl] (r = -0.709), [TCO2] (r = -0.653), and

serum anion gap (r = 0.653). In the second patient, correlated with [Glu] (r = 0.569), [Na] (r = -
0.642), tonicity (r = 0.323), osmolarity (r = 0.414), [Cl] (r = -0.631), [TCO2] (r = -0.715), and

serum anion gap (r = 0.668) [P < 0.001 for all]. In both patients, all other parameters correlating
with [K] correlated strongly with [Glu].  Their correlations had, in every instance, the same sign
as the correlation between [K] and [Glu] suggesting that changes in [Glu] were probably the
main cause of these correlations.

Tables 2-7 show comparisons of laboratory tests between episodes of hyperglycemia and
control states (Tables 2-5) and between episodes of catabolic illness and control states (Tables
6, 7). The control states of absence of severe hyperglycemia and catabolic illness in the same
patients (not in the control group of patients used for comparison of morbidity in Table 1) were
defined in the Methods subsection. The bodies of Tables 2-7 show the comparison of the mean
values, while the captions of the Tables show the number (percent) of the [K] measurements
that were in the hyperkalemic range in each column. Tables 2, 3 compare biochemical values
between the episodes of non-ketotic hyperglycemia and the two control states in Patients 1 and
2, respectively. Tables 4, 5 show the same values for episodes of diabetic ketoacidosis. Average
[K] values were significantly higher at hyperglycemia than in either control stage in the pre-HD
and HD periods in both patients. Substantially higher percentages of [K] levels were in the
hyperkalemic range at hyperglycemia than in the control states. The highest [K] values were
observed in episodes of diabetic ketoacidosis.
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 Pre-HD Period → → HD Period → →

 Hyperglycemia Control 1 Control 2 Hyperglycemia Control 1 Control 2

Sample Number 36 36 109 31 31 43

Glucose, mg/dL 628±172 148±86** 178±103** 595±202 135±93** 182±90**

Potassium, mmol/L 5.28±0.861 4.34±0.67**2 4.34±0.72*3 5.39±1.044 4.36±0.61*5 4.21±0.52**6

Sodium, mmol/L 129.2±3.9 137.1±4.1** 137.7±3.2** 129.4±4.6 135.6±3.2** 135.0±4.6**

Corrected sodium,
mmol/L 137.4±3.0 137.9±2.7 139.0±2.7 137.2±2.7 136.2±3.0 136.3±4.6

Tonicity, mOsm/L 292.3±9 282.3±7** 280±6** 292±7 279±6** 280±10**

SUN, mg/dL 45±13 45±13 45±18 37±15 38±15 38±12

Osmolarity mOsm/L 309±8 298±9** 301±8* 305±8 292±7** 294±10

Chloride, mmol/L 98.0±5.3 104.7±5.6** 105.3±4.8** 95.1±5.3 100.7±5.5* 101.1±6.0**

TCO2, mmol/L 22.8±3.3 23.7±3.4 24.7±3.1 25.1±4.7 26.6±4.5 25.4±3.5

Anion gap, mEq/L 8.8±6.8 8.1±3.6 7.7±3.3 8.3±3.6 7.7±3.0 8.5±3.4

Creatinine, mg/dL 2.53±0.50 2.47±0.97 2.70±1.17 4.34±1.10 4.15±1.20 3.50±1.20

TABLE 2: Serum concentrations at nonketotic hyperglycemia and control states.
Patient 1
* p < 0.05; ** p < 0.01. HD = hemodialysis; SUN = serum urea nitrogen; TCO2 = total carbon dioxide. 1: > 5.0 mmol/L 22/36
(61.1%), > 5.9 mmol/L 9/36 (25.0%); 2: > 5.0 mmol/L 4/36 (11.1%), > 5.9 mmol/L 0/36 (zero) 3: > 5.0 mmol/L 18/109 (16.5%), > 5.9
mmol/L 3/109 (2.8%) 4: > 5.0 mmol/L 20/31 (54.5%), > 5.9 mmol/L 7/31 (ss.6%); 5: > 5.0 mmol/L 4/31 (12.9%), > 5.9 mmol/L 0/31
(zero) 6: > 5.0 mmol/L 2/43 (4.7%), > 5.9 mmol/L 0/43 (zero)
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 Pre-HD Period → → HD Period → →

 Hyperglycemia Control 1 Control 2 Hyperglycemia Control 1 Control 2

Sample Number 23 23 52 19 19 116

Glucose, mg/dL 587±123 156±68* 175±98** 497±68 112±63** 179±89**

Potassium,  mmol/L 5.08±0.781 4.21±0.48*2 4.37±0.54**3 5.07±1.124 4.47±0.73*5 4.28±0.65**6

Sodium, mmol/L 130.4±3.1 134.4±3.7* 135.0±3.6** 133.4±4.0 135.9±4.4 136.6±2.9**

Corrected sodium,
mmol/L 138.2±2.7 135.4±3.8 136.2±3.2 139.8±3.9 136.2±4.3 137.9±3.0

Tonicity, mOsm/L 293±6 277±8** 280±7** 294±9 280±106* 283±7**

SUN, mg/dL 38±21 36±19 38±18 48±14 45±16 39±18

Osmolarity, mOsm/L 307±9 290±9** 293±9** 312±8 295±9** 297±8**

Chloride, mmol/L 94.3±4. 100.2±3.1* 102.1±3.7** 95.9±4.5 99.2±4.5 99.2±4.0

TCO2, mmol/L 23.7±3.4 24.2±3.3 23.3±3.6 18.0±2.8 21.8±2.8 22.7±3.9

Anion gap, mEq/L 12.4±4.1 10.0±2.9 9.5±3.5 18.5±4.9 14.6±4.7 14.6±4.6

Creatinine, mg/dL 2.68±1.75 2.68±1.99 3.20±1.85 5.28±1.83 5.51±1.94 5.45±1.96

TABLE 3: Serum concentrations at nonketotic hyperglycemia and control states.
Patient 2.
* p < 0.05; ** P < 0.01. HD = hemodialysis; SUN = serum urea nitrogen; TCO2 = total carbon dioxide; 1: > 5.0 mmol/L 12/23
(52.2%), ≥ 6.0 mmol/L 3/23 (13.0%); 2: > 5.0 mmol/L 1/23 (4.3%), ≥ 6.0 mmol/L 0/23 (zero) 3: > 5.0 mmol/L 3/52 (5.8%), ≥ 6.0
mmol/L 0/52 (zero) 4: > 5.0 mmol/L 10/19 (52.6%), ≥ 6.0 mmol/L 5/19 (26.3%); 5: > 5.0 mmol/L 4/19 (21.1%), ≥ 6.0 mmol/L 0.19
(zero) 6: > 5.0 mmol/L 15/116 (12.9%), ≥ 6.0 mmol/L 0/116 (zero)
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 Pre-HD Period → → HD Period         → →

 Ketoacidosis Control 1 Control 2# Ketoacidosis Control 1 Control 2#

Sample number 3 3 109 5 5 43

Glucose, mg/dL 1350±260 199±54 178±103 1422±331 99±77 182±90

Potassium, mmol/L 7.60±1.671 3.80±0.762 4.34±0.723 7.08±0.774 3.92±0.645 4.21±0.526

Sodium, mmol/L 118.0±3.0 141.0±4.6 137.7±3.2 117.8±6.6 132.6±5.8 135.0±4.6

Corrected sodium, mmol/L 138.0±2.3 141.3±4.0 139.0±2.7 139.0±2.7 132.4±7.1 136.3±4.6

Tonicity, mOsm/L 311±10 289±7 285±6 315±8 271±15 280±10

SUN, mg/dL 83±28 82±21 45±18 38±11 59±25 38±12

Osmolarity, mOsm/L 341±15 318±2 301±8 332±9 292±10 294±10

Chloride, mmol/L 82.0±9.6 107.3±4.9 105.3±4.8 75.6±5.8 93.8±3.0 101.1±6.0

TCO2, mmol/L 8.0±2.6 22.3±2.9 24.7±3.1 10.8±1.3 30.6±1.9 25.4±3.5

Anion gap, mEq/L 28.0±8.7 13.3±1.5 7.7±3.3 31.4±5.5 8.2±2.7 8.5±3.4

Creatinine, mg/dL 4.87±2.45 4.14±1.44 2.70±1.17 4.55±0.70 4.39±0.38 3.50±1.20

Arterial pH  7.13±0.08 - - 7.20±0.01* - -

PaCO2, mm Hg 23.3±10.3 - - 27.0±15.6* - -

Arterial HCO3, mEq/L 9.7±2.0 - - 11.9±3.4& - -

TABLE 4: Serum concentrations and arterial blood gases at diabetic ketoacidosis and
control states. Patient 1
# Same as Control 2 in Table 2; & arterial blood gases were available in only two of the five episodes of ketoacidosis. ketoacidosis
HD = hemodialysis; SUN = blood urea nitrogen; TCO2 = total carbon dioxide; HCO3 = calculated bicarbonate from arterial blood
gases; 1: ≥ 6.0 mmol/L 2/3 (66.7%); 2: > 5.0 mmol/L 0/3 (zero); 3: > 5.0 mmol/L 18/109 (16.5%), ≥ 6.0 mmol/L 3/109 (2.8%) 4: ≥ 6.0
mmol/L: 5/5 (100%); 5: > 5.0 mmol/L (0/5) (zero); 6: > 5.0 mmol/L 2/43 (4.7%) (%), ≥ 6.0 mmol/L 0/43 (zero)
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 Ketoacidosis Control 1 Control 2#

Sample number 3 3 116

Glucose, mg/dL 819±32 166±45 179±89

Potassium, mmol/L 6.87±0.761 4.10±0.272 4.28±0.653

Sodium, mmol/L 133.7±1.5 138.7±0.6 136.6±2.9

Corrected sodium, mmol/L 145.2±2.0 139.8±0.8 137.9±3.0

Tonicity, mOsm/L 313±5 287±2 283±7

SUN, mg/dL 44±1 44±17 39±18

Osmolarity, mOsm/L 329±5 302±7 297±8

Chloride, mmol/L 90.3±1.5 100.7±0.6 99.2±4.0

TCO2, mmol/L 5.3±2.3 23.3±2.1 22.7±3.9

Anion gap, mEq/L 38.0±0 14.7±1.5 14.6±4.6

Creatinine, mg/dL 6.43±0.25 5.90±0.99 5.45±1.96

Arterial pH  7.08±0.10 - -

PaCO2, mm Hg 15.0±11.3 - -

Arterial HCO3, mEq/L 7.5±3.9 - -

TABLE 5: Serum concentrations and arterial blood gases at diabetic ketoacidosis and
control states. Patient 2, HD period
# Same as Control 2 in Table 3. HD = hemodialysis; SUN = blood urea nitrogen; TCO2 = total carbon dioxide; HCO3 = calculated
bicarbonate from arterial blood gases. 1 ≥ 6.0 mmol/L 3/3 (100); 2 > 5.0 mmol/L 0/3 (zero); 3 > 5.0 mmol/L 15/116 (12.9%), ≥ 6.0
mmol/L 0/116 (zero)

When all the samples in the pre-HD and HD periods were analyzed together for categorical
variables, [K] values were statistically higher in Patient 1 during episodes of catabolic illness
(179 samples) versus all other samples (4.86±0.95 vs. 4.59±0.92 mmol/L, p = 0.005). In the
second patient, [K] levels were higher than in other samples during episodes of catabolic illness
(106 samples, 4.89±1.01 vs. 4.41±0.76 mmol/L, p < 0.001) and during periods of beta-
blocker treatment (42 samples, 5.00±1.11 vs. 4.53±0.81 mmol/L, p = 0.011), and lower than in
other samples during periods of sodium polystyrene sulfonate treatment (35 samples, 4.17±0.75
vs. 4.65±0.87 mmol/L, p = 0.001) and intake of loop diuretics (n = 266 samples, 4.56±0.91 vs.
4.79±0.64 mmol/L, p = 0.036). [K] values were significantly higher during acting catabolic illness
than during the control periods in the pre-HD period in Patient 1 (Table 6) and during the HD
period in Patient 2 (Table 7) .
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 Pre-HD Period → HD Period →

 Catabolic Illness Control# Catabolic Illness Control#

Sample Number 63 109 77 43

Potassium, mmol/L 5.00±0.531 4.34±0.72**2 4.42±0.783 4.21±0.524

Glucose mg/dL 157±96 178±103 152±87 182±90

Sodium,           mmol/L 135.8±3.1 137.7±3.2** 135.9±3.3 135.0±4.6

Corrected sodium, mmol/L 136.7±2.7 139.0±2.7** 136.8±9.1 136.3±4.6

Tonicity, mOsm/L 280±6 285±6** 280±6 280±10

SUN, mg/dL 49±10 45±18 35±18 38±12

Osmolarity, mOsm/L 298±7 301±8** 293±9 294±10

Chloride, mmol/L 105.9±4.5 105.3±4.8 101.5±5.8 101.1±6.0

TCO2, mmol/L 22.4±2.2 24.7±3.1** 28.0±5.3 25.4±3.5**

Anion gap, mEq/L 7.5±2.3 7.7±3.3 6.5±2.7 8.5±3.4**

Creatinine, mg/dL 2.53±0.43 2.70±1.17 4.06±0.93 3.50±1.20**

TABLE 6: Serum concentrations at the stage of catabolic illness and at the control
stage. Patient 1
* p , 0.05; ** p < 0.01. # Same as Control 2 in Table 2; HD = hemodialysis; SUN = serum urea nitrogen; TCO2 = total carbon
dioxide; 1: >5.0 mmol/L 30/63 (47.6%), ≥ 6.0 mmol/L 1/63 (1.6%); 2: >5.0 mmol/L 18/109/ (16.5%), ≥ 6.0 mmol/L 3/109 (2.8%) 3:
>5.0 mmol/L 20/77 (26.0%), ≥ 6.0 mmol/L 2/77 (2.6%) 4: >5.0 mmol/L 2/43 (4.7%), ≥ 6.0 mmol/L 0/43 (zero)
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 Pre-HD Period → HD Period →

 Catabolic Illness Control# Catabolic Illness Control#

Sample Number 24 52 67 116

Potassium mmol/L 4.27±0.771 4.37±0.542 5.01±0.993 4.28±0.65**4

Glucose mg/dL 170±89 175±98 174±94 179±89

Sodium           mmol/L 136.2±2.5 135.0±3.6 135.4±3.2 136.6±2.9*

Corrected sodium mmol/L 137.3±2.6 136.2±3.2 136.6±3.4 137.9±3.0*

Tonicity mOsm/L 282±6 280±7 280±8 283±7*

SUN mg/dL 37±11 38±18 50±17 39±18**

Osmolarity mOsm/L 295±7 293±9 298±8 297±8

Chloride mmol/L 104.1±3.1 102.1±3.7* 100.4±3.8 99.2±4.0

TCO2 mmol/L 21.5±2.8 23.3±3.6* 20.0±3.8 22.7±3.9**

Anion gap mEq/L 10.5±2.8 9.5±3.5 15.0±4.0 14.6±4.6

Creatinine mg/dL 3.39±1.35 3.20±1.85 5.67±1.90 5.45±1.96

TABLE 7: Serum concentrations at the stage of catabolic illness and at the control
stage. Patient 2
* p < 0.05; ** p < 0.01. # Same as Control 2 in Table 3; HD = hemodialysis; SUN = serum urea nitrogen; TCO2 = total carbon
dioxide. 1: >5.0 mmol/L 5/24 (20.8%), ≥ 6.0 mmol/L 0/24 (zero); 2: >5.0 mmol/L 3/52 (5.7%), ≥ 6.0 mmol/L 0/52 (zero) 3: >5.0
mmol/L 32/67 (47.8%), ≥ 6.0 mmol/L 10/67 (14.9%); 4: >5.0 mmol/L 15/116 (12.9%), ≥ 6.0 mmol/L 0/116 (zero)

Linear regressions of [K] on [Glu] were as follows:

Patient 1, pre-HD period:     [K] = 3.970 + 0.002x[Glu], r 2 = 0.278, p < 0.001

Patient 1, HD period:            [K] = 3.879 + 0.002x[Glu], r 2 = 0.294, p < 0.001

Patient 2, pre-HD period:    [K] = 4.039 + 0.002x[Glu], r 2 = 0.080, p < 0.001

Patient 2, HD period:           [K] = 4.079 + 0.002x[Glu], r 2 = 0.337, p < 0.001

The slope of the regressions was exactly the same (0.002 mmol/L rise in [K] per 1 mg/dL rise in
[Glu]) for all four regressions.  Standard regression diagnostics showed that the assumptions of
linearity, homoscedasticity, and normality were justified for all four regressions.

Tables 8, 9 show the predictors of [K] by multiple linear regression. In Patient 1, high values of
[Glu] and SUN, catabolic illness, and use of ACE inhibitors or ARBs were independent predictors
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of higher [K] values, while the pre-HD period, the period of continuous insulin infusion for
treatment of severe hyperglycemia and periods of hospitalization were independent predictors
of lower [K] values. For Patient 2, high values of [Glu] and SUN and catabolic illness were
independent predictors of higher [K] values, while the pre-HD period, the period of continuous
insulin infusion for treatment of severe hyperglycemia and use of sodium polystyrene sulfonate
and diuretics were independent predictors of lower [K] values.

Variable Regression Coefficient Standard Error P-Value  r2

Serum glucose 0.002 < 0.001 < 0.001  

Serum urea nitrogen 0.008 0.002 < 0.001  

Hemodialysis period -0.234 0.086 0.007  

During insulin infusion -1.024 0.159 < 0.001  

During hospitalization -0.408 0.118 0.001  

Catabolic illness 0.591 0.088 < 0.001  

Use of ACE inhibitor or ARB 0.382 0.125 0.002  

Constant 4.008 0.142 < 0.001 0.397

TABLE 8: Predictors of serum potassium concentration. Multiple linear regression in
Patient 1
ACE = angiotensin converting enzyme. ARB = angiotensin receptor blocker.

Variable Regression Coefficient Standard Error P-Value  r2

Serum glucose 0.002 < 0.001 < 0.001  

Serum urea nitrogen 0.017 0.002 < 0.001  

During insulin infusion -0.910 0.146 < 0.001  

Catabolic illness 0.744 0.091 < 0.001  

Use of sodium polystyrene sulfonate -1.082 0.134 < 0.001  

Use of loop diuretics -0.288 0.105 0.006  

Constant 3.620 0.129 < 0.001 0.456

TABLE 9: Predictors of serum potassium concentration. Multiple linear regression in
Patient 2.
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When several other biochemical parameters were added to the list of candidate variables,
multiple linear regression identified the following additional predictors of [K]: For Patient 1
[TCO2] (p < 0.001) and anion gap (p < 0.001); and for Patient 2 [TCO 2] (p < 0.001) and [Na]Corr

(p = 0.009). The coefficient assigned to [Glu] was 0.002 in all multiple linear regression models.

Figure 1 shows the percentages of hyperkalemic episodes associated with hyperglycemia,
catabolic illness, and other causes. Pre-HD and HD periods were analyzed separately in each
patient. Hyperglycemia and catabolic illness combined accounted for 76.2% to 90.0% of the
hyperkalemic episodes. For severe hyperkalemia, hyperglycemia and catabolic illnesses
accounted for 84.2% of the hyperkalemic episodes in the pre-HD period of Patient 1 and for
100% of the hyperkalemic episodes in the HD period of Patient 1 and the pre-HD and HD
periods of Patient 2.

FIGURE 1: Percent of episodes of hyperkalemia (�[K]�_S ≥5.1
mmol/L) associated with severe hyperglycemia, catabolic
illness and other causes. Pt = patient. HD = hemodialysis
period.

Discussion
The main finding of this report was that the great majority of the episodes of hyperkalemia in
both patients were associated with severe hyperglycemia or active catabolic illness. These
mechanisms of hyperkalemia were noted during both the pre-HD and HD periods. The
hyperkalemic effects of hyperglycemia and catabolic illness are consequences of disturbances
in the internal potassium balance. The exit of potassium from cells is reversible by
administration of insulin in hyperglycemic hyperkalemia and irreversible when catabolic illness
causes cell death.
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The hyperglycemic egress of potassium from cells is caused by two interdependent
mechanisms. The fundamental hyperkalemic mechanism is absence of insulin [11-
14]. Hyperglycemia secondary to insulin deficit causes also hypertonicity secondary to
extracellular solute (glucose) gain [14]. Hypertonicity causes exit of potassium from cells
[15]. Hypertonicity secondary to hyperglycemia is aggravated in patients with substantial renal
function by excessive loss of water through osmotic diuresis [14, 16-17]. Katz's coefficient [9]
provides an estimate of the fraction of hypertonicity that is due to extracellular glucose gain.
This coefficient estimates that serum tonicity increases by 2.4 mmol/L for each 100 mg/dL rise
in [Glu] [14]. The corrected serum sodium concentration [10] uses Katz's coefficient to compute
an estimate of the relative loss of water through osmotic diuresis [14]. Osmotic diuresis causes,
in addition to excessive water loss, large losses of potassium that counterbalance the exit of
potassium from the cells. In the face of large potassium losses in patients with preserved renal
function and severe hyperglycemia, [K] may be elevated, in the normal range, or even low [17].

Severe hyperglycemia developing in patients with end-stage renal disease (ESRD) is not
associated with large water loss through osmotic diuresis. Consequently, the degree of
hypertonicity in dialysis-associated hyperglycemia is predicted by Katz's formula with
remarkable accuracy [18]. Urinary potassium losses are also limited, and hyperkalemia is
frequent in hyperglycemic episodes occurring in this setting [19-20]. The degree of
hyperglycemic hyperkalemia in dialysis patients is higher when ketoacidosis is present [19,
21]. Ketoacidosis contributes to the development of hyperglycemic hyperkalemia by affecting
the function of several transport pathways in the cell membrane [22]. Insulin is the only
required treatment for both hyperglycemia and hyperkalemia in patients with ESRD, although
additional measures may be necessary for extreme cases of hyperkalemia [19-20, 23].

Hyperglycemia was frequent and caused hyperkalemia in both patients of this report during
both the pre-HD and HD periods.  We addressed the question whether the relationship between
[Glu] and [K] differs between the pre-HD and HD periods. There is evidence suggesting that
the regulation of internal potassium balance and the effects of insulin on certain aspects of
transport across cell membranes differ between the pre-HD and HD periods; therefore, it is
possible that the relation between [Glu] and [K] may also differ between these periods. A
synopsis of this evidence is presented below.

Investigations of the disruption of cellular functions in uremia suggest that uremic
abnormalities of the function of the sodium-potassium ATPase (Na/K-ATPase) of the cell
membranes is the root of the uremic defect in cellular potassium uptake. Uremia (circulating
uremic factor(s)) was shown to cause a decrease in the activity of the cellular membrane Na/K-
ATPase first in red cells [24] and subsequently in several other cell types and tissues, including
leukocytes, sarcolemma, and intestines [25-26]. A class of digitalis-like compounds, labelled
collectively as endogenous cardiotonic steroids (CTS), has been linked to the uremic inhibition
of cell membrane Na/K-ATPase activity. The decrease in this activity leads to decreases in
cytosolic potassium [27]. CTS, which have pleiotropic actions, are either cardenolides
(endogenous ouabain) or bufadienolides (telocinobufagin, marinobufagenin). In a recent
report, marinobufagenin (MBG) was found to be an important inhibitor of the cell membrane
Na/K ATPase in uremia [28]. Plasma MBG levels were elevated in both patients with renal
failure and experimental animals with renal failure following partial nephrectomy. The
elevated plasma MBG levels were associated with decreases in cell membrane Na/K-ATPase
activity, which returned toward normal levels after the addition of MBG-binding antibodies
[28]. Whether additional molecular mechanisms contribute also to the uremic defect of the
internal potassium balance is not clear.

A hemodialysis dose leading to correction of clinical uremic manifestations also corrects the
uremic defect in cellular potassium uptake [29]. The effect of dialysis on plasma MBG levels has
not been reported thus far, to our knowledge. Uremia also causes peripheral tissue resistance to
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the hypoglycemic effect of insulin [30], while the effect of insulin on cellular uptake of
potassium is unchanged [31] or enhanced [32] in uremia.

No difference in the relationship between [K] and [Glu] was found between the pre-HD and HD
periods in this report. All four linear regressions of [K] on [Glu] found the same regression
coefficient (0.002).  The regression equations compute that [K] increased by 0.2 mmol/L for each
100 mg/dL rise in [Glu] in both the pre-HD and HD periods in both patients. It is of note that, in
addition to the simple regressions, all four multiple regressions assigned the same coefficient
(0.002) to the relationship between [Glu] and [K]. The effect of hyperglycemia on [K] was
uniform in both patients throughout the observed course of CKD. This finding was
robust. However, whether this finding is applicable in general to patients with diabetes mellitus
and CKD will need studies in large cohorts of patients. Prevention of severe hyperglycemia in
patients who exhibit a hyperkalemic effect of hyperglycemia similar to that found for the two
patients in this report will also prevent, to a large extent, severe hyperkalemia.

The highest [K] and [Glu] values were observed in both patients during episodes of diabetic
ketoacidosis. Although ketoacidosis was not identified as a predictor of [K], [TCO2] and serum

anion gap, both of which showed their largest deviations from normal values in episodes of
ketoacidosis (Tables 2-5), had a significant effect on [K] by multivariable analysis. In addition,
[K] values corresponding to the mean [Glu] values calculated from the linear regressions
differed minimally from the corresponding actual mean [K] values for the episodes of non-
ketotic hyperglycemia (Tables 2-3), but were lower, by 0.36 to 1.15 mmol/L, than the
corresponding actual mean [K] values for the episodes of ketoacidosis (Tables 4-5). These
findings are consistent with previous findings supporting an added hyperkalemic effect of
ketoacidosis in CKD patients [19, 21].

Although the magnitude of hyperkalemia was less in episodes of active catabolic illness than in
hyperglycemic episodes, multivariate analysis identified catabolic illness as a predictor of
hyperkalemia. Combined, hyperglycemia, and catabolic illness accounted for the majority of
the episodes of hyperkalemia (Figure 1) and almost all the episodes of severe hyperkalemia in
both patients.

Conclusions
In addition to bringing to the forefront derangements of internal potassium balance as a cause
of hyperkalemia in CKD, the findings of this report also suggest that at least several of these
derangements are preventable. The main limitation of the report is that it presents only two
patients. The mechanisms of hyperkalemia in CKD patients are multiple and often involve the
external potassium balance. Studies in large numbers of patients on chronic dialysis are needed
to identify the principal causes of hyperkalemia in dialysis populations. The purpose of this
report was to illustrate a method of detailed analysis of all the factors that can potentially
cause hyperkalemia in individuals with CKD, including factors related to the internal potassium
and external balance.  Such an analysis should guide individualization of the preventive
measures.
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