Cerebellar and Occipital Alterations in Brain Perfusion in a Patient with Post-acute COVID-19 Encephalopathy Misdiagnosed as Primary Psychotic Disorder

Yuki Ikemizu 1, Yasunori Oda 2, Yuki Hirose 2, Tsuyoshi Sasaki 3, Masaomi Iyo 2

1. Department of Psychiatry, Chiba Graduate School of Medicine, Chiba, JPN 2. Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, JPN 3. Department of Child Psychiatry, Chiba University Hospital, Chiba, JPN

Corresponding author: Yasunori Oda, odayasunori@chiba-u.jp

Abstract
We describe the case of an unvaccinated 21-year-old Japanese male who suffered from psychotic symptoms due to encephalopathy, termed ‘post-acute COVID-19 syndrome (PACS).’ At 1 week after his discharge following the remission of a SARS-Cov-2 infection, he experienced hyperactive delirium and unexpected movements of his limbs. As COVID-19-associated encephalopathy was suspected as a cause of the psychotic symptoms, he was admitted to the department of neurology. He received antiviral and steroid pulse therapy, but his psychiatric symptoms did not improve completely. He was thus admitted to our psychiatric ward with a diagnosis of primary psychotic disorder. Although he did not take psychopharmacotherapy, he gradually achieved a remission of psychiatric symptoms. At 3 months after the SARS-CoV-2 infection, single-photon emission computed tomography (SPECT) revealed hypoperfusion in the bilateral cerebellar dentate nuclei and occipital lobes, whereas there were no abnormal findings on fluorine-18 fluoro-deoxyglucose positron emission tomography (18F-FDG PET) at 6 months after the infection. This case indicates that (i) brain perfusion SPECT can be effective for detecting functional alterations in post-acute COVID-19-associated encephalopathy, and (ii) it is necessary to carefully monitor patients’ progress rather than easily diagnose primary psychotic disorder.

Categories: Psychiatry, Psychology, Infectious Disease
Keywords: 18f-fluorodeoxyglucose positron emission tomography (18f-fdg pet), single photon emission tomography (spect), encephalopathy, post-covid-19, post-acute covid-19, covid-19

Introduction
The pandemic of coronavirus disease 2019 (COVID-19; hereafter, ‘COVID’), which is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has affected the world since the end of 2019. According to the World Health Organization, there have been approx. 770 million COVID cases globally. Although most people infected with SARS-CoV-2 get better without sequelae, some experience post-acute COVID or post-COVID symptoms. The terms ‘post-acute COVID’ and ‘post-COVID’ refer to the prolonged symptoms which may be new or returning symptoms that individuals develop after their recovery from the initial, acute SARS-CoV-2 infection [1]. While COVID targets mainly the body’s respiratory organs, accumulating evidence suggests that COVID can cause neurological disorders. The course of COVID also appears to vary significantly among individuals, as do the symptoms of this disease.

There is growing concern about neuropsychiatric complications following SARS-CoV-2 infection. Almqvist et al. invited clinicians’ attention to at least five classes of neurological complications, as follows. A: Cerebrovascular disorders including ischemic stroke and macro/micro-hemorrhages, B: Encephalopathies, C: Para-/post-infectious immune-mediated complications such as Guillain-Barre syndrome and acute disseminated encephalomyelitis (ADEM), D: (meningo-)encephalitis, potentially with concomitant seizures, and E: Neuropsychiatric complications such as psychosis and mood disorders [2]. Indeed, it was reported that one- to two-thirds of patients with COVID have been diagnosed with some type of neuropsychiatric disorder [3].

Encephalopathy is a broad term that encompasses a wide range of presentations and etiologies. The exact definition of the encephalopathy associated with COVID has not been clarified [4]. Molecular imaging techniques such as brain fluorine-18 fluoro-deoxyglucose positron emission tomography (18F-FDG PET) and single-photon emission computed tomography (SPECT) have been used for the diagnostic work-up of neurological COVID manifestations [5], and several 18F-FDG PET studies revealed hypometabolism in various brain regions in patients suffering from post-COVID symptoms [6]. Other studies used FDG-PET to investigate the longitudinal metabolic patterns in COVID encephalopathy [7,8]. Both PET and SPECT are established methods for the differential diagnoses of neurodegenerative central nervous system disorders, and evidence about the usefulness of PET for COVID continues to accumulate. A few studies using SPECT for
COVID have been conducted, but the studies were limited to 123I-FPCIT-SPECT to evaluate parkinsonism [9,10], and few researchers have performed 123I-IMP-SPECT to evaluate brain changes due to COVID encephalopathy [11].

We describe the case of an individual who presented with psychosis due to encephalopathy even after the remission of his COVID state. Since there were no abnormal findings on various tests including magnetic resonance imaging (MRI) and an examination of the patient’s cerebrospinal fluid (CSF), he was diagnosed with primary psychotic disorder and admitted to our psychiatric ward. However, 123I-IMP-SPECT was able to detect brain alterations in the patient, resulting in the diagnosis of post-acute COVID encephalopathy.

Case Presentation

The patient was an unvaccinated 21-year-old Japanese male with no previous psychiatric history. In August 2021, he went to an emergency department because of the fever he was experiencing. Since his COVID-19 rapid antigen test result was positive (1st day), he self-quarantined at a hotel for several days. However, he developed respiratory failure and was admitted to a COVID-19 response hospital (8th day). He was immediately treated with minimal oxygen therapy, steroids, and remdesivir. He also received oral 6-mg dexamethasone for 9 days. He was discharged without sequelae 7 days after admission (15th day).

A week after his discharge, he gradually developed insomnia and anxiety and then began to experience unexpected chorea-like movements of his limbs. On the 25th day, he developed severe confusion. Since he also had a moderate fever, he was transferred to another COVID-19 response hospital by ambulance. At that hospital, the result of a rapid antigen test was negative, but the patient exhibited psychomotor excitation and ran screaming out of the hospital. He was finally restrained by police.

On the 26th day, he was brought to our hospital’s emergency department. Neurological examinations revealed an altered level of consciousness, disorientation, and torsion dystonia. He was then considered to be in a delirious state. As COVID associated with encephalitis was suspected, he was admitted to our hospital’s neurology department. The result of a reverse transcription-polymerase chain reaction (RT-PCR) test for SARS-CoV-2 at that time was also negative. Blood screening results at his admission showed an increased white blood cell count (11.2 L × 103/L) and an increased C-reactive protein (CRP) (3.37 mg/dL) level; the results of a CSF examination and MRI of the brain were unremarkable.

From the day of the patient’s admission, he was treated empirically with intravenous acyclovir for possible herpetic encephalitis. On the 29th day, he was still in a state of agitation and disorientation. He was thus administered haloperidol 10 mg/day, but no remarkable changes occurred. At this point, the patient presented a cranial nerve disorder resembling dysarthria and dysfunction of skilled motor activities. Further investigations including CSF–PCR, electroencephalography (EEG), and an anti-NMDA receptor antibody test were performed, and all test results were within normal limits. However, the patient’s clinical state was highly suggestive of encephalitis associated with COVID, and we thus administered steroid pulse therapy with intravenous 1000-mg methylprednisolone for 3 days and then intravenous 60-mg methylprednisolone for 3 days.

After this corticoid therapy, the patient appeared to show significant improvement in his consciousness level and confusion. Based on the absence of characteristic findings, neurologists concluded that his symptoms were of primary psychotic disorder. However, he still suffered executive dysfunction and significant attentional deficits. He also presented verbal perseveration and rapid mood swings. On the 38th day, we decided to commit him to our psychiatric ward. As he gradually experienced an improvement of psychiatric symptoms, he was followed closely without psychotropic medication.

After his admission to the psychiatric ward, the patient achieved a remission of psychiatric symptoms. However, the impairment of the movement of his upper and lower limbs and the verbal fluency and dysarthria persisted. His results on the Clinical Assessment for Attention Test (CAT) consisting of a Visual Cancellation Task (VCT), a Symbol Digit Modalities Test (SDMT) and a Memory Updating Test (MUT) revealed that he also suffered significant attentional deficits (Table 1). We thus administered an intensive rehabilitation treatment consisting of physiotherapy and occupational therapy.
Clinical Assessment for Attention Test (CAT)

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Score</th>
<th>Equivalent years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Cancellation Task (VCT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[shape 1] time</td>
<td>48.2 sec</td>
<td>50's</td>
</tr>
<tr>
<td>correct answers</td>
<td>98.2 %</td>
<td></td>
</tr>
<tr>
<td>hit rate</td>
<td>100 %</td>
<td></td>
</tr>
<tr>
<td>[shape 2] time</td>
<td>48.4 sec</td>
<td>50's</td>
</tr>
<tr>
<td>correct answers</td>
<td>100 %</td>
<td></td>
</tr>
<tr>
<td>hit rate</td>
<td>100 %</td>
<td></td>
</tr>
<tr>
<td>[number] time</td>
<td>74.5 sec</td>
<td>50's</td>
</tr>
<tr>
<td>correct answers</td>
<td>99.1 %</td>
<td></td>
</tr>
<tr>
<td>hit rate</td>
<td>100 %</td>
<td></td>
</tr>
<tr>
<td>[pseudonym] time</td>
<td>83.5 sec</td>
<td>30's</td>
</tr>
<tr>
<td>correct answers</td>
<td>100 %</td>
<td></td>
</tr>
<tr>
<td>hit rate</td>
<td>100 %</td>
<td></td>
</tr>
<tr>
<td>Symbol Digit Modalities Test (SDMT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44.5 %</td>
<td>60's</td>
</tr>
<tr>
<td>Memory Updating Test (MUT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 digits</td>
<td>87.5 %</td>
<td>40's</td>
</tr>
<tr>
<td>4 digits</td>
<td>75 %</td>
<td>40's</td>
</tr>
</tbody>
</table>

TABLE 1: The results of the Clinical Assessment for Attention Test (CAT)

The patient's performance on the Clinical Assessment for Attention Test (CAT) is presented as raw scores and equivalent years.

After 3 weeks of rehabilitation at our hospital, the patient went to another hospital to continue rehabilitation. When he left our hospital, his Global Assessment of Functioning (GAF) score had improved from 10 points to 50 points and his score on the Brief Psychiatric Rating Scale (BPRS) had improved from 81 points to 15 points. After his discharge from the rehabilitation hospital, he visited our hospital regularly. A SPECT examination that was conducted 3 months after the onset of the patient's SARS-CoV-2 infection revealed hypoperfusion in the bilateral cerebellar dentate nuclei and occipital lobes (Figure 1), whereas at 6 months after the onset of the patient's infection there were no abnormal findings on 18F-FDG PET. At 9 months after the onset of the patient's SARS-CoV-2 infection, he still showed a slight attention deficit and impaired fine motor skills in both arms.
FIGURE 1: Brain N-isopropyl-p-(123I)-iodoamphetamine (IMP) single-photon emission computed tomography (SPECT) findings.

The 123I-IMP-SPECT examination performed 3 months after the onset of the patient's SARS-CoV-2 infection indicated hypoperfusion in the bilateral cerebellar dentate nuclei and occipital lobes.

Discussion

We have presented the case of an adult with psychosis that was associated with encephalopathy after the remission of COVID. Although this patient’s case would be classified as PACS, he still suffered from an attention deficit and impaired fine motor skills in both arms 9 months after the onset of his SARS-CoV-2 infection. Since the patient’s results on several tests including a CSF examination and MRI were unremarkable, he was admitted to our psychiatric ward for possible primary psychotic disorder. The eventual use of 123I-IMP-SPECT finally detected hypoperfusion in the patient’s bilateral cerebellar dentate nuclei and occipital lobes. He was thus able to discontinue his psychiatric visits and function sufficiently without antipsychotic medication.

While numerous 18F-FDG-PET imaging studies of post-acute COVID-associated encephalopathy have been reported, accumulating evidence suggests that FDG-PET hypometabolism and cognitive impairment are associated in patients with a COVID infection after a maximum of 1 year post-onset [12]. In our patient’s case, 18F-FDG PET did not show abnormal findings at 6 months post-onset. There are few case reports of encephalopathy with brain perfusion abnormalities on 123I-IMP-SPECT; interestingly, in our patient’s case, 123I-IMP-SPECT revealed hypoperfusion in the bilateral cerebellar dentate nuclei and occipital lobes. The dentate nucleus is the largest cerebellar nucleus, and it is involved in the fine-control of voluntary movement, cognition, language, and sensory functions [13]. The human dentate nuclei are divided into default-mode, salience-motor, and visual processing territories [14]. The occipital lobe is the visual information-processing area of the brain. It is also associated with visuospatial processing, distance and depth perception, color determination, object and face recognition, and memory formation [15]. We thus speculate that the hypoperfusion observed in our patient’s cerebellar dentate nuclei and occipital lobes might have been involved in his impaired fine-motor skills and decline in CAT scores, especially on the VCT. Since this patient’s neurologic manifestations and psychological examination results are explainable by the hypoperfusion in the cerebellar dentate nuclei and occipital lobes, it is reasonable to diagnose him with post-acute COVID-19-associated encephalopathy. The present case highlights the merits of performing 123I-IMP-SPECT when difficulty in diagnosing patients with COVID is encountered. Further investigations are needed to elucidate this issue.

The Global COVID-19 Neuro Research Coalition recently strongly recommended that delirium, subsyndromal delirium, and coma be used as criteria for suspecting COVID-19 encephalopathy [4]. However, the diagnosis of post-acute COVID-19 encephalopathy, in which the SARS-CoV-2 status is already negative, is very difficult even for neurologists. With regard to the present patient’s case, since psychiatric symptoms are rarely the primary symptom in acute disseminated encephalomyelitis (ADEM), it is unlikely that this case was ADEM. In contrast, anti-NMDA receptor encephalitis is often marked by psychiatric symptoms, but the anti-NMDA receptor antibody was negative in our patient. Since he had predominantly psychiatric symptoms with no abnormal findings on head MRI, it is highly unlikely that the other type of anti-neuronal cell surface antigen antibodies would be detected. The hospital’s neurologists thus diagnosed our patient with primary psychotic disorder, not post-acute COVID-19-associated encephalopathy. However, 123I-IMP-SPECT revealed the patient’s brain alterations, resulting in the diagnosis of post-acute COVID-19...
encephalopathy. If he had been diagnosed with primary psychotic disorder without further testing, he may have been on antipsychotic medication for a long period of time. Given the difficulty in diagnosing encephalopathy with the usual tests including CSF examination and brain MRI, it appears that clinicians need to prescribe antipsychotics for patients with possible encephalopathy after a thorough consideration.

Conclusions

In conclusion, we successfully treated a patient with post-acute COVID-19 encephalopathy without psychotropic medication. 123I-IMP-SPECT was able to visualize hypoperfusion in the patient’s bilateral cerebellar dentate nuclei and occipital lobes. If there is even a slight possibility of post-acute COVID-19 encephalopathy, it is necessary to carefully monitor the patient’s progress rather than easily diagnose primary psychotic disorder. It is also worthwhile to perform 123I-IMP-SPECT.

Additional Information

Disclosures

Human subjects: Consent was obtained or waived by all participants in this study. Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: Dr. Sasaki declare(s) personal fees from Dai-ichi Sankyo, Eli Lilly, Glaxo Smith Kline, Kyowa, Novartis, Janssen, Otsuka, Shinonogi, Shion, Taisho and Tanabe Mitsubishi. Dr. Sasaki has received speakers’ honoraria from Dai-ichi Sankyo, Eli Lilly, Glaxo Smith Kline, Kyowa, Novartis, Janssen, Otsuka, Shinonogi, Shiho, Taisho and Tanabe Mitsubishi. Dr. Oda declare(s) personal fees from Otsuka, Sumitomo Pharma, Meiji Seika and Eisai. Dr. Oda has received speakers’ honoraria from Otsuka, Sumitomo Pharma, Meiji Seika and Eisai. Iyo declare(s) personal fees from Eli Lilly, Sumitomo Pharma, Pfizer, Abbott, Janssen, Otsuka, Meiji Seika, Astellas, Ono, GlaxoSmithKline, Takeda, Mochida, Kyowa Haoko, MSD, Eisai, Daiichi-Sankyo, Novartis, Teijin, Shinonogi, Hisamitsu and Asahi Kasei. Dr. Iyo received consultant fees from Eli Lilly, Sumitomo Dainippon, Pfizer and Abbott and reports honoraria from Janssen, Pfizer, Abbott, Janssen, Otsuka, Meiji Seika, Astellas, Ono, GlaxoSmithKline, Takeda, Mochida, Kyowa Haoko, MSD, Eisai, Daiichi-Sankyo, Novartis, Teijin, Shinonogi, Hisamitsu and Asahi Kasei. Iyo declare(s) personal fees from Otsuka, Sumitomo Pharma, Meiji Seika and Eisai. Dr. Oda has received speakers’ honoraria from Daichi Sankyo, Eli Lilly, Glaxo Smith Kline, Kyowa, Novartis, Janssen, Otsuka, Shionogi, Shire, Taisho and Tanabe Mitsubishi. Dr. Iyo declare(s) personal fees from Eli Lilly, Sumitomo Dainippon, Pfizer and Abbott and reports honoraria from Janssen, Eli Lilly, Otsuka, Meiji Seika, Astellas, Sumitomo Dainippon, Ono, GlaxoSmithKline, Takeda, Mochida, Kyowa Haoko, MSD, Eisai, Daiichi-Sankyo, Novartis, Teijin, Shinonogi, Hisamitsu and Asahi Kasei. Other relationships: All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

Acknowledgements

We thank the patient for giving his consent for the case report to be published.

References