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Abstract
The rhabdoid subtype of undifferentiated pancreatic carcinoma is rarely reported. The clinical course of this
disease is therefore poorly understood, although it is apparently an aggressive malignancy. We herein
discuss the case of a 69-year-old man presenting with a rapidly enlarging mass of the pancreatic body and
tail who was diagnosed with locally advanced SMARCB1-deficient undifferentiated pancreatic carcinoma
with rhabdoid features, treated with radical resection and adjuvant chemotherapy, and has achieved 18-
month disease-free survival ongoing at the time of article publication. We identify and contrast our case
with 15 similar tumors reported in the English literature, briefly discuss the biology of this tumor, its
relationship to malignant rhabdoid tumors of childhood, the role of SMARCB1 and its parent complex
switch/sucrose-non-fermentable chromatin remodeling complex (SWI/SNF) in modulating the behavior of
pancreatic malignancy, and the potential therapeutic avenues available for SWI/SNF-mutated malignancies.
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Introduction
Pancreatic cancer is a leading contributor to death in Australia, ranking 11th for years of life lost overall and
fourth for years of life lost due to cancer deaths [1]. Five-year overall survival is estimated to be as low as 3-
8% [2]. Undifferentiated carcinoma (UDC) of the pancreas is an uncommon subtype of pancreatic ductal
adenocarcinoma (PDAC) comprising 2-7% of all pancreatic cancers with poorer prognosis compared to
conventional PDAC [3-5].

Sarcomatoid UDC is a recognized morphologic pattern of UDC, defined by at least 80% of neoplasm
displaying spindle cell features, with or without heterologous differentiation [6]. This pattern includes very
rarely reported cases with rhabdoid cells, which share some histological and genetic similarities with other
malignancies such as malignant rhabdoid tumors of childhood. These tumors are typified by cells with
eccentrically located polygonal nuclei, highly eosinophilic cytoplasm with intracytoplasmic inclusions, a
degree of discohesion, and scant myxoid stroma. We have identified in the English literature 15 cases of
rhabdoid pancreatic UDC demonstrating mutation or immunohistochemical loss of SMARCB1, a potent
tumor suppressor and core subunit of the switch/sucrose-non-fermentable chromatin remodeling complex
(SWI/SNF) [7-17]. SWI/SNF is a master regulator of nucleosome occupancy at transcription start sites and
thereby of the transcriptome [18]. Mutation, transcriptional repression, or deletion of SMARCB1 is
commonly seen in malignant rhabdoid tumors of childhood, where the loss of SMARCB1 function has broad
effects on gene transcription and promotes cell-cycle progression and proliferation [18-25]. In humans,
SWI/SNF complexes are composed of one of two interchangeable ATPase subunits (BRM/SMARCA2 or
BRG1/SMARCA4), an AT-rich DNA-interacting domain (BAF250a/ARID1A or BAF250b/ARID1B), and a
variable array of core subunits involved in protein-protein interactions including histone remodeling and
interactions with nuclear receptors and transcription factors [24,26,27]. SMARCB1, which encodes Snf5/INI-
1/BAF47, is of this latter type.

Loss of SMARCB1, and of other SWI/SNF subunits, is frequently seen in various forms of adult sarcoma and
carcinoma; the prognostic and therapeutic significance of this has been only recently elucidated. In a
pathological case series of 19 UDCs of the gastrointestinal tract, nine tumors demonstrated rhabdoid
morphology; six of these (67%) showed lost or reduced expression of at least one essential SWI/SNF subunit,
and three of these tumors were SMARCB1-deficient [28]. Weak SMARCB1 expression occurs in up to 70% of
osteosarcomas irrespective of age and correlates with tumor stage, decreased disease-free survival, and
decreased progression-free survival [29]. SMARCB1 loss is frequently seen in a rhabdoid phenotype of
epithelioid sarcoma and correlates with poor differentiation and metastatic disease in colorectal
carcinoma [30-31].
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SWI/SNF alterations are common in lung cancer, although SMARCB1 seems less commonly implicated than
the ATPase and DNA-interacting domain subunits. ARID1A downregulation or loss is seen in 5-10% of all
lung cancers and is associated with reduced 5-year survival in non-small cell lung cancer (NSCLC) [32-33].
Loss of BRG1 or BRM is seen in 30% of NSCLC cell lines; there is concomitant loss in 10% of NSCLC cases
which is associated with poor survival [34]. An aggressive, undifferentiated thoracic malignancy, SMARCA4-
UT, is typified by loss of the ATPase BRG1 and cytopathological resemblance to SMARCB1/INI1-deficient
rhabdoid tumors [35].

We herein describe a case of UDC of the pancreas in a 69-year-old male with immunohistochemical loss of
SMARCB1 expression treated with radical resection and adjuvant chemotherapy, demonstrating 18-month
disease-free survival at the time of publication.

Case Presentation
A 69-year-old man presented to our institution with worsening subacute abdominal pain; serial computed
tomography demonstrated a rapidly-growing mass of the pancreatic body and tail (Figure 1) with a
maximum radiological dimension of 59 mm, as compared to 43 mm on outpatient imaging four weeks prior.
The patient was previously well with no significant medical or surgical history, no known family history of
malignancy, and no evidence of exocrine or endocrine pancreatic insufficiency. He was a lifetime non-
smoker who consumed alcohol moderately and infrequently. Tumor marker cancer antigen (CA) 19.9 was
within the normal range.

FIGURE 1: (A) axial and (B) coronal slices of CT at admission,
demonstrating 50 x 59 mm (axial) mass of pancreatic body and tail.
The tumor encased the splenic artery and was associated with pathological left gastric lymph nodes measuring up
to 11 mm.

Endoscopic ultrasound and core biopsy revealed a malignant neoplasm composed of broad sheets of
discohesive epithelioid cells with hyperchromatic, pleomorphic, and eccentrically located nuclei, prominent
macronucleoli, and variably prominent rhabdoid morphology. Scattered binucleated and multinucleated
cells were noted. No conventional glandular elements were identified. Immunohistochemistry demonstrated
strong, diffuse staining for pan-cytokeratin markers (MNF116, AE1/AE3) and focal strong staining for
cytokeratin 7, and negative staining for cytokeratin 20, TTF1, CDX2, NKX3.1, ERG, S100 protein, SOX10, and
desmin. SMARCB1/INI1 expression was lost, consistent with SMARCB1/INI1-deficient UDC (Figure 2). A
subclonal pattern of loss of SMARCA2 was also identified, involving the majority of tumor cells, while
SMARCA4 expression was retained. PD-L1 immunohistochemistry demonstrated a combined positive score
(CPS) of 90.
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FIGURE 2: Tumor histopathology.
(A) High-power magnification (H&E, 400x) demonstrating sheets of discohesive, pleomorphic, rhabdoid tumor
cells including multinucleated forms and necrosis. (B) Low power magnification (H&E, 40x) showing invasion of
tumor into a large vein. (C) Tumor cells were strongly positive for MNF116 pan-cytokeratin immunohistochemical
stain (200x). (D) Tumor cells showed abnormal loss of nuclear staining for INI1, with retained staining in admixed
inflammatory cells (positive internal control, 400x).

Despite rapid interval growth, the tumor remained technically resectable, with no evidence of invasion of
the superior mesenteric vascular pedicle. Distal pancreatectomy and splenectomy were performed. Due to
extensive desmoplastic change in the retroperitoneum, partial left adrenalectomy was also performed in
order to obtain adequate macroscopic posterior margins. Histopathology demonstrated a 66-mm firm,
infiltrative mass with central necrosis involving the pancreatic body and tail. It invaded the splenic vein but
not the splenic artery and metastatic disease was identified in four of 15 regional lymph nodes. The tumor
margin was 7 mm clear from the adrenal gland, though the anterior pancreatic margin was focally involved.
The tumor cells showed similar features to those seen at biopsy and were associated with extensive necrosis,
numerous mitoses including atypical forms, lymphovascular invasion, and regional lymph node
involvement. Some nodal metastases showed conventional acinar cytoarchitectural features which were not
identified elsewhere in the tumor. Low-grade pancreatic intraepithelial neoplasia was present in the
background ducts, in addition to changes in chronic pancreatitis. Whole exome sequencing revealed loss of
heterozygosity of the SMARCB1 locus. The postoperative course was uncomplicated and the patient has
completed adjuvant gemcitabine/nab-paclitaxel chemotherapy with no radiological evidence of disease
recurrence at 18-month follow-up.

Discussion
In the largest case series, we identified rhabdoid pancreatic UDC, and median survival was four months [7].
Other series have also supported a poorer one-year overall survival for all forms of pancreatic UDC compared
to conventional PDAC, although five-year overall survival is similar [5,36]. Sarcomatoid and anaplastic
pancreatic UDC should be distinguished from pancreatic UDC with osteoclast-like giant cells (UDC-OGCs),
which may be associated with five-year overall survival exceeding that of conventional PDAC [37-39].

We found no analyses of treatment outcomes in SMARCB1-deficient rhabdoid pancreatic UDC adequately
powered to make subtype-specific management recommendations. We searched EMBase, MEDLINE,
PubMed, and Cochrane databases, identifying four case series [7,8,13,16] and six case reports [9-
12,14,15] which yielded 15 individual cases of SMARCB1-deficient rhabdoid pancreatic UDC (Table 1). Of
these, both treatment methods and clinical outcomes were specified for nine cases; three received surgery
only [7,9], four received both surgery and chemotherapy [11,12,14,15], one received palliative chemotherapy
only [10], and one was palliated without treatment [8]. Most patients died within one year of diagnosis. One
patient managed with distal pancreatectomy and adjuvant gemcitabine/paclitaxel had survived 20 months
disease-free at the time of publication [14]. Another patient [11] received a Whipple procedure and adjuvant
gemcitabine/capecitabine which afforded at least nine months of disease-free survival prior to publication.
In our patient’s case, despite locoregionally advanced disease, upfront resection and adjuvant
gemcitabine/nab-paclitaxel have thus far yielded 18-month disease-free survival.
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Reference Patient Staging Histology Immunohistochemistry Genomic analysis Treatment Outcome

Agaimy et

al. [7]

76-year-old male

(case 11)
NS

Rhabdoid; monomorphic

anaplastic
SMARCB1 loss KRAS wild-type Surgery

Deceased 1-

month post-op

Agaimy et

al. [7]

44-year-old female

(case 12)
NS

Rhabdoid; monomorphic

anaplastic;

angiosarcoma-like

SMARCB1 loss KRAS pGly12Asp amplification Surgery NS

Agaimy et

al. [7]

72-year-old male

(case 13)
NS

Rhabdoid; monomorphic

small-cell;

pseudopapillary

SMARCB1 loss KRAS wild-type Surgery

Deceased 1-

week

postoperatively

Agaimy et

al. [7]

61-year-old male

(case 14)
NS

Rhabdoid; monomorphic

anaplastic
SMARCB1 loss KRAS wild-type Surgery NS

Sano et al.

[8]
68-year-old female 4 Rhabdoid SMARCB1 loss NS Palliative

Deceased 2-

weeks post-

diagnosis

Hua et al.

[9]
59-year-old female 4

Rhabdoid;

pseudopapillary-like

SMARCB1 loss; PD-L1

deficient
KRAS wild-type; SMARCB1 deletion Debulking surgery

Deceased 3-

months post-op

Ohike et

al. [10]
35-year-old female 4

Rhabdoid; pleomorphic

epithelioid
SMARCB1 loss KRAS wild-type; SMARCB1 wild-type Palliative TS-1

Deceased 7-

months post-

diagnosis

Mugaanyi

et al. [11]
24-year-old male 3

Rhabdoid; pleomorphic

myxoid
SMARCB1 loss KRAS wild-type; SMARCB1 deletion

Whipple, R0 resection; adjuvant

gemcitabine/capecitabine

Disease-free 9-

month

postoperatively

Tahara et

al. [12]
67-year-old female 4 Rhabdoid; monomorphic SMARCB1 loss KRAS wild-type

Palliative debulking surgery; palliative

chemotherapy

Deceased 2-

week

postoperatively

Lehrke et

al. [13]
Pathology case series NS Rhabdoid

SMARCB1 loss; PD-L1-

deficient
NS NS NS

King et al.

[14]
59-year-old female 2b

Rhabdoid; monomorphic

epithelioid

SMARCB1 loss; PD-L1

CPS 20
KRAS G12D

Neoadjuvant FOLFIRINOX; distal

pancreatectomy; adjuvant

gemcitabine/paclitaxel

Disease-free

20-month post-

diagnosis

Cho et al.

[15]
65-year-old female 4 Rhabdoid; mucinous NS SMARCB1 missense

Radical excision; adjuvant

radiotherapy

Deceased 1-

year

postoperatively

Yamamoto

et al. [16]

Pathology case series

– Case #5
NS Rhabdoid; anaplastic SMARCC2 loss

ARID1A missense; SMARCA4

missense; SMARCB1 missense;

SMARCC2 missense

NS NS

Yamamoto

et al. [16]

Pathology case series

– Case #15
NS Rhabdoid; anaplastic

SMARCB1 loss;

SMARCC1 loss

SMARCA4 missense; SMARCC2

missense
NS NS

Yamamoto

et al. [16]

Pathology case series

– Case #3 or 9 or 12 or

14

NS

Rhabdoid; anaplastic;

with osteoclast-like giant

cells

ARID1A loss;

SMARCB1 loss;

SMARCC2 loss

ARID1A missense;

SMARCA4 missense; SMARCC2

missense

NS NS

TABLE 1: Cases of rhabdoid pancreatic UDC demonstrating immunohistochemical loss or
mutation of SMARCB1.
UDC: undifferentiated carcinoma

The precise underlying genetic aberrations and potential therapeutic targets in rhabdoid pancreatic UDC
remain unclear. Agaimy et al. proposed the existence of two molecularly and morphologically distinct
subtypes of rhabdoid pancreatic UDC: an anaplastic monomorphic subtype characterized by SMARCB1 loss
without KRAS alteration, and a pleomorphic giant cell subtype characterized by KRAS alterations with intact
SMARCB1 expression [7]. However, our patient’s tumor demonstrated significant cellular pleomorphism and
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giant cells in areas of SMARCB1 loss. Similarly, two previous reports each detailed a rhabdoid pancreatic
UDC with concomitant KRAS alteration and loss of SMARCB1 expression, one of which displayed
pleomorphic histology with osteoclast-like giant cells [14,16]. A limiting factor of the hypothesis presented
by Agaimy et al. is the absence of either immunohistochemical or genomic analysis of SWI/SNF subunits
other than SMARCB1. One pathology case series described five rhabdoid pancreatic UDCs (four anaplastic,
one sarcomatoid) with mutation or immunohistochemical loss of one or more SWI/SNF subunits [16];
SMARCB1-loss was seen in only two of the anaplastic tumors, and neither with SMARCB1-loss as the sole
SWI/SNF aberration. One rhabdoid tumor with intact SMARCB1-expression harbored a missense mutation
in the SMARCB1 gene, with concomitant SMARCC2-loss and mutation of ARID1A and SMARCA4 genes.

Numerous therapies are emerging to target specific pathways affected by SWI/SNF loss, which may have
utility in rhabdoid pancreatic UDC and other malignancies. For both SMARCB1 and ARID1A-mutated
tumors, experimental evidence in vitro and murine models suggests that synthetic lethality can be achieved
by inhibiting EZH2 methyltransferase of the polycomb regressive complex 2 (PRC2), which is upregulated by
loss of SWI/SNF function [40-42]. Tumor regression in a case of SMARCB1-deficient lung cancer has been
reported with the use of an inhibitor of aurora kinase A (AurKA), which cooperates with SWI/SNF in
mediating topoisomerase II interaction with DNA [43-44]. AurKA inhibition has also been demonstrated to
produce synthetic lethality in SMARCA4-mutated murine models of NSCLC [45]. However, human trials have
been limited due to relatively low efficacy at tolerable drug doses, particularly with alisertib [46-48]. A novel
AurKA inhibitor TAS-119 showed an improved safety profile in phase 1 trials, though phase 2 data are as yet
unpublished [49].

The intracytoplasmic aggregates characteristic of rhabdoid tumors have been shown to sequester KEAP1, a
ubiquitin ligase adaptor protein, which results in a reduction of NRF2 proteolysis [8]. NRF2 directly
upregulates multi-resistance protein 1 (MRP1) expression and contributes to chemoresistance in PDAC and
UDC cell lines, suggesting a further axis of potential therapeutic targets [50-52].

Of great clinical interest is the role of immune checkpoint inhibitors in SWI/SNF-mutated pancreatic cancer.
Botta et al. reported a case of SMARCB1-deficient pancreatic cancer with a complete response to
pembrolizumab and 15-month progression-free survival, although the presence of rhabdoid histology was
not specified [53]. The tumor was MMR-deficient, which presents a likely source of immunogenicity;
however, Lehrke et al. have presented a series of undifferentiated pancreatic carcinomas in which 15 of 24
(63%) showed PD-L1 enrichment, including four rhabdoid tumors with intact MMR expression [13].
Similarly, Leruste et al. have demonstrated in a murine model of malignant rhabdoid tumor, with
knockdown of SMARCB1 as the sole genetic lesion, that infiltration with CD8+ T cell populations enriched
with PD-1 expression is characteristic of rhabdoid tumors [54]. They propose disruption of the epigenome
secondary to SMARCB1 loss as a prime mediator of immunogenicity.

A series of 4591 solid tumors evaluated with NGS for SWI/SNF mutations compared treatment outcomes
with immunotherapy [55]. There was a strong correlation between SWI/SNF mutations and high tumor
mutational burden. Of 1001 patients treated with immunotherapy, SWI/SNF mutants had higher rates of
disease response, longer progression-free survival, and longer overall survival compared to SWI/SNF wild-
type tumors; most of this effect was explained by high tumor mutational burden (TMB) in the SWI/SNF-
mutant group. Notably, neither SWI/SNF-mutant pancreatic tumors nor SMARCB1-mutant tumors of any
type were prevalent enough to perform meaningful subgroup analysis, and microsatellite instability was not
controlled for in the analysis of treatment outcomes according to SWI/SNF status despite the demonstration
of higher microsatellite instability rates in the SWI/SNF-mutant cohort. For NSCLC, where perhaps most
work has been done to investigate the effectiveness of immunotherapy in SWI/SNF-mutated cancers, results
have been inconsistent and prospective data lacking despite promising findings from retrospective
reports [56]. Nonetheless, a recent meta-analysis incorporating data from 3416 patients with NSCLC
receiving immunotherapy did demonstrate improved progression-free survival in ARID1B-mutant cancers
(22.4 vs 4 months) and overall survival in ARID2-mutant cancers (36 vs 11 months) compared to wild-type
tumors [57]. When accounting only for tumors with high TMB, all SWI/SNF-mutant NSCLCs demonstrated
improved progression-free survival compared to wild-type tumors.

Conclusions
In summary, rhabdoid histomorphology is rarely seen in cases of UDC of the pancreas; however,
when identified, it is often associated with alterations in multiple SWI/SNF subunits, aggressive tumor
behavior, and poor clinical outcomes. There is promising pre-clinical and clinical evidence to support the
selective use of immune checkpoint inhibitors in non-pancreatic SWI/SNF-mutated tumors, though it is
unclear whether the same holds true for SWI/SNF-mutant pancreatic malignancies. Our experience would
support upfront resection followed by adjuvant chemotherapy for technically resectable disease in
appropriately selected patients with rhabdoid undifferentiated pancreatic carcinoma, but robust data to
guide management are lacking given the rarity of this tumor.
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