ALBI-RT: A Novel Radiation Therapy Specific Hepatotoxicity Prediction Model for Hepatocellular Carcinoma Patients

Smith Apisarnthanarax, Stephanie Schaub, Stephen R. Bowen, Tobias Chapman, Matthew Nyflot

Corresponding author: Smith Apisarnthanarax

1. Radiation Oncology, University of Washington 2. Radiation Oncology, University of Washington 3. Radiation Oncology, University of Washington School of Medicine 4. Department of Radiation Oncology, University of Washington

Categories: Radiation Oncology

Keywords: albi, hepatocellular carcinoma, child-pugh, stereotactic body radiotherapy (sbrt)

How to cite this abstract


Abstract

Objectives: An unmet need in radiation treatment (RT) of hepatocellular cancer (HCC) is objective prediction models that aid in appropriate patient selection for safe treatment. Recent studies have suggested the albumin-bilirubin (ALBI) grade system may predict for hepatotoxicity; however, the original ALBI grades were not optimized to predict survival after RT. We propose a novel analysis of the ALBI equation, designated ALBI-RT, to assess hepatotoxicity risk in HCC patients after RT.

Methods: We retrospectively reviewed the charts of 47 consecutive HCC patients treated with SBRT (n = 21) and hypofractionated proton therapy (n = 26) from 2013-2016. Raw ALBI values and Child-Pugh (CP) scores were calculated from albumin and bilirubin data. Any patient deaths were recorded, and assessed for association with radiation induced liver disease (RILD). Raw ALBI was assessed as a continuous variable to perform ROC analyses to identify cutoffs for overall survival (OS) and RILD-specific survival (RILD-SS) that maximized the Youden index of ROC accuracy. Dichotomization of the ROC for RILD-SS resulted in ALBI-RT. Univariate predictors of OS and RILD-SS were evaluated using Cox proportional hazard regression to determine hazard ratios (HR) and Chi-squared p values.

Results: Patient cohort median age was 67 years (43-89) with 62% CP-A and 38% CP-B/C. Median follow-up and OS was 13 months and 10 months, respectively. There were 18 deaths with 6 ascribed to RILD. ROC analysis based on raw ALBI identified an OS cutoff at -2.00 (AUC=0.68, p=0.04) with a sensitivity and specificity of 67%. ROC analysis for RILD-SS had an increased sensitivity to 100% and specificity of 71% with an identified raw ALBI cutoff at -1.70 (AUC=0.94,
p=0.008). We defined ALBI-RT grades as: A < -1.70 (n=29) and B = -1.70 (n=18). On univariate analysis for OS, raw ALBI as a continuous variable (HR 3.0, p=0.02) and to a lesser degree ALBI-RT Grade B (HR 2.4, p=0.06) performed similarly to traditional ALBI grade (HR 3.0, p=0.01), and CP score (HR 1.4, p=0.05). Conversely, for RILD-SS, univariate analysis revealed that raw ALBI as a continuous variable (HR 25.1, p=0.01) and ALBI-RT Grade B (HR 9.9, p=0.04) were associated with higher average increases in relative risk of radiation-related hepatotoxicity than traditional ALBI grade (HR 5.8, p=0.02) and CP score (HR 2.3, p=0.003).

Conclusions: ALBI-RT is a promising novel metric that may have a larger effect size when predicting RILD related death after RT for HCC than both CP and conventional ALBI grades in this patient cohort. It has potential utility in the pre-treatment assessment of HCC patients, with a cutoff of = -1.70 predicting death from RILD. Future prospective evaluation and validation in independent data sets will strengthen the generalizability and utility of ALBI-RT.