Gradient based Volume Visual Attention Maps in Ray Casting Rendering

Introduction
Interactive volume data visualization technique for ray-casting, combining the visual focus of attention and automatic a-priori region segmentation.

Automatically segmented regions which are the user's focus of attention are highlighted while the rest is faded out using different techniques (opacity and color hue).

Volume Visual Attention Maps (VVM): Adaptation of traditional 2D visual attention maps for dense volume datasets, focused on ray-casting based rendering.

The problem:
- Complexity of visualizing dense volume data on conventional 2D monitors, superposition of many data layers in the view plane
 - Surface rendering methods: view of a limited portion of the data
 - View of the whole dataset achievable with Direct Volume Rendering (DVR), like ray-casting, but most convenient visualization requires difficult transfer functions adjustments
- Increasing patient number and less time for medical professionals (e.g., radiologists) to achieve same tasks
- Need of high effectiveness at high efficiency

Evidence:
- Radiologists intentionally focus their eyes on important regions for diagnosis
 + VAM represent person's focus of attention during certain time period [1]
- Automatic image segmentation techniques:
 - Not completely accurate nor robust
 - Not consider the specific requirements of the user
 + Can be quicker, more objective and even recognize regions non-identifiable by human eye

Objectives:
1. More intuitive and quicker interactive volume data visualization process, while keeping record of the regions reviewed by the user
2. Eye gaze based UI to control ray-casting based visualization
3. Develop a ray-casting based interactive (GPU based) DVR algorithm which uses a VVM to highlight the important data for the user while fading off the non-important

Materials

Prototype components:
- Point-of-regard based, non-intrusive eye tracker
- 2 implementations of the VVM guided ray casting

Interaction:
- Eye tracking used for interaction with the visualization in different ways:
 1. Virtual camera control
 2. Compute VVM (to guide rendering process)

Methods

Preliminary results:
- Prior naive approach from the author, presented in MMVR19 [3]

New Contributions:
+ More realistic visual attention model (including considerations of early-ray termination in ray casting)
+ Data element importance measure combining the visual attention model and knowledge about the homogeneous regions in the visualized dataset (e.g., Watershed)
+ Adapted ray-casting algorithm for importance based volume rendering

Conclusions and Discussion

- Interactive semi-automatic data visualization method
 - A priori data set knowledge exploitation: automatic pre-segmentation (e.g., Watershed [4]) producing an over-segmented result
 - User’s visualization requirements gathering: dynamic model of the user’s visual attention on the data set
 - Data knowledge and visual attention knowledge fusion onto an importance measure for every data element in the data set
 - Importance based ray casting direct volume rendering algorithm with a simple yet effective illustrative rendering style
 - Validation in clinical practice is still required in terms of both effectiveness and efficiency of the technique
 - Future migration into a WebGL based implementation

References

http://www.vicomtech.org